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Preface

Microstrip circuits for microwave engineering have progressed through the research
and development stages and are now found as an integral part of many small-signal
microwave systems. This form of circuit is also becoming increasingly important in
baseband circuits for optical communications and has implications for interstage
communication in high-speed digital networks.

This book has been written primarily as a textbook for the student who is
interested in microwave engineering, and is aimed at developing a practical
understanding of microstrip components and systems. It presents a thorough
grounding in the basics of microstrip components and for interfacing them with
transistors and diodes in active circuits. The material makes the book suitable both as
a textbook for a graduate course in microwave circuits over one or two semesters, and
as a textbook or reference book for final year undergraduate courses on high
frequency (or microwave) circuits and electronics. The book will also be useful for
practicing engineers, physicists and other specialists requiring a reference for
microstrip circuits. The chapters are, in the main, self-contained and include
examples, making the book suitable for self study. Exercises and a list of key
references are included at the end of most chapters, together with selected answers at
the end of the book.

As this is a teaching text and not a treatise, there is an emphasis on
fundamentals at the expense of peripheral detail. The treatment of the subject matter
is approached in a manner that is suitable for teaching purposes, based on a number of
years experience in teaching this type of material. The book emphasizes the physical
point of view. Proofs of important results are always given and considerable effort
has been made to find or develop simple, yet rigorous, proofs. Nevertheless, physical
interpretations of mathematical results are stressed whenever possible. Many useful
results, the proofs of which are reasonably simple, have been left to be solved as
exercises. This helps to limit the size of the book without sacrificing rigor and, at the
same time, provides pedagogical advantages.

Many new approaches and some new material are included. The scattering
parameter treatment is from a physical point of view which emphasizes a traveling
wave approach and studiously avoids calculations which are no more than
manipulations -of formulae and symbols. The proof of various power gain formulae
follows a similar original approach. The concept of a zero length line has been found
to be very useful in disentangling the traveling waves in a number of circumstances.
Original formulations of various design formulae are also given. Charts for the line
widths and separation for parallel-coupled lines in couplers and filters are presented in
a manner that is suitable for circuit synthesis.

All major aspects of microstrip circuits, principles and design are covered.
Assumed knowledge includes complex and matrix algebra, two-port parameter
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xii Preface

theory, elementary differential equations, the basics of lumped filter design, the
fundamentals of electromagnetic theory, and elements of transistor and diode circuits.
Elementary transmission line theory is so fundamental to much of the book, that the
first chapter gives a thorough revision of the necessary material. Two-port networks
are characterized mainly in terms of scattering parameters at microwave frequencies,
and a thorough treatment of the characterization of these networks is included in
Chapter 2. Nevertheless, when results are more elegantly derived with the help of
other parameters, such parameters are used, as we do not believe in slavishly adhering
to a scattering parameter treatment simply for the sake of consistency. The microstrip
line is used in all the circuit components in this book. A low frequency analysis of
the line itself is given in Chapter 3, with details of the numerical analysis techniques
provided as appendix material, that will be of particular interest to those who wish to
have an introduction to the field analysis of microstrip line configurations. In the
analysis of components, it is desirable at first to separate the component design from
the second-order effects of non-ideal lines. However, these effects are not to be
ignored and are brought together in Chapters 4 and 5, where lines in a practical
environment are discussed. The concept and use of the voltage reflection coefficient
with its interpretation on the Smith Chart is important and, wherever possible,
graphical interpretations and solutions on the chart are used.

Hybrid-line couplers are the first class of component to be considered and are
dealt with in Chapter 7. Here, the notion of even and odd modes with respect to a
plane of symmetry through the device is introduced, so that a four-port network may
be analyzed in terms of equivalent two-port networks. Even- and odd-mode analysis
is extended to parallel-coupled lines for directional couplers in Chapter 8. Filter
analysis, in particular for band-pass and band-stop filters, follows directly from the
concepts that have been developed for coupling between parallel lines in directional
couplers. Filter design and analysis is now such a broad and detailed field, that it has
been necessary to limit the material to such topics that provide a useful coverage of
the basic filter types together with their relationship with other components. A
collection of components (some of great importance such as those for launching
microwaves into a microstrip line) that do not fit neatly into other chapters are
described as miscellaneous components in Chapter 10.

Active circuit characterization is included in a self-contained manner in Chapter
11, to allow a sensible design to be achieved when microstrip lines are interfaced to
active circuits. Some examples of practical systems that include active components
are given in Chapter 12, which thus consolidates earlier material. In the final chapter
on measurements, a number of laboratory experiments associated with the basic line
and the effects of discontinuities are described, and may be carried out to complement
the lectures.

In order to keep the book within sensible bounds, some related topics are
omitted. Other types of planar circuits, such as slot lines and coplanar waveguides,
are only briefly alluded to, as they are seen to be peripheral to the main thrust of this
book. Even though much of the practical realization of microstrip circuits is in the
monolithic microwave integrated circuit (MMIC) form, we have left out any specific
treatment of MMICs as not being as fundamental as a thorough grounding in
microstrip basics. For similar reasons, we do not deal with aspects of the
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manufacturing technology for thick and thin film circuits.

The omission of CAD techniques requires special mention. Again, space
limitations play their part but, more fundamentally, we consider that an intelligent use
of CAD techniques requires a thorough understanding of the modeling assumptions
that underpin them. Without such an understanding, the use of CAD is pedagogically
unsound, as the user of a package will neither appreciate its limitations nor notice
when obvious errors are being produced. We feel that the reader who has thoroughly
grasped the principles of microstrip circuits expounded in this book will quickly learn
how to apply any specific CAD package.

Several diagrams have been redrawn from a number of key journals serving the
microwave community. For permission to do so, we thank the IEEE, the IEE, the
publishers of the Microwave Journal and of Microwaves and RF, and Mrs Anita M.
Smith for supplying Figure 6.3 (The Smith Chart) through the Analog Instruments
Company.

This book would not have been written without the inspiration of and
interaction with many people. We thank our students, both graduate and
undergraduate, for the opportunity and the challenge of teaching this material. The
enthusiasm of Ted Gannan provided the spark that set the project on its way. To our
manuscript reviewers and the staff of Prentice Hall Australia, and in particular to
Fiona Marcar and Andrew Binnie, our thanks for their help and tolerance. Finally,
our thanks go to our colleagues whose interest in the progress of the book has always
been an encouragement that deserves its due recognition.
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Symbols

Symbols are described and indexed to an early instance of their major use. Units,
standard mathematical symbols, symbols used in a local context or derivation, and
coordinate component parts of variables are not included. The subscript, n, is used as
a general variable for a range of values.

A,B,C,D
Aq, Bp, Cp
an

S
C

Ce

Ceven» Codd
F

G

G

The transmission or ABCD-matrix elements
Power series coefficients
The normalized input wave into the ot port

A (normalized) wave launched by a source into a matched load

Magnetic flux density

Normalized susceptance, asiny =g + jb
Susceptance of the n'" normalized admittance

The normalized reflected wave from the n'! port

As ag, but from the output of a two-port network
Capacitance (also an ABCD-parameter element)
Corner capacitance

Even- and odd-mode capacitance

Open-circuit fringing capacitance

End-capacitance in a transmission line [1-equivalent circuit
Step transition capacitance

T-junction discontinuity capacitance

Coupling coefficient in dB

Load and source stability circle centers
Transmission line capacitance per meter
Capacitance per meter for a microstrip line, width w
Velocity of e.m. waves in free space = 2.997925 % 10% m.s™
Voltage coupling coefficient for 6 = 90°

Coupler directivity in dB

Electric flux density

Transmission line length

Voltage coupling coefficient for arbitrary 6

Electric field

Incident wave voltage components at ports 1 and 2
Reflected wave voltage components at ports 1 and 2
The voltage wave launched by a source into a2 matched line
Frequency in Hz

Design or center frequency

Quasi-static approximation frequency limit
Available power gain

(Ordinary) power gain

Transducer power gain

1

xv

221

2.1.1
2.1.4

6.5
6.5
2.1.1
11.5.2

5.3
5.6
5.2
9.3.5
5.4
5.5
7.1
11.4
1.2
5.4
123
7.3
7.1

8.4
2.1.1
2.1.1
2.14

7.4
4.4.1
1.2
11.2
11.2
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Gay» Gpy» Gy
G
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i+ 8r» Bf» 8o
Bn

L Ly
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~
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Ry, Ry, Ry
R, Rs
R

Unilateral power gains
Transmission line conductance per meter
Normalized conductance, asiny = g + jb
The real parts of the y-parameters
Conductance of the n' normalized admittance
Magnetic field
Substrate height
Current
Forward, reverse and transmitted traveling wave currents
Load current
Total current at port n
Insertion loss in dB
Incident wave current components at ports 1 and 2
Reflected wave current components at ports 1 and 2
Immittance inverter parameter
Normalized admittance inverter parameter, J/Y,
Stability factor
Flux reflection coefficient
Elliptic integral
Phase coefficient for a plane wave in free space
Inductance; the nth inductance
Corner inductance
End-inductance in a transmission line T-equivalent circuit
Step transition inductance
Filter attenuation in dB
Passband ripple attenuation in dB
Transmission line inductance per meter
Inductance per meter for a transmission line, width w
Transmission line length
Corner miter percentage
Step transition correction factor
Power
Available power
Average power flow
Available power at the output of a two-port network
Available power of a source
Input and output power
Load power
Power-split ratio in dB
Power-split ratio as a ratio of voltages
Quality factor
Effective filling fraction
Point charge at node n
Column matrix of point charges
Resistance
Surface resistance
Reference planes
Load and source stability circle radii
Transmission line resistance per meter

1153
1.2

11.54
6.5

1.2
13.1
213

7.1
2.1.1
2.1.1
943
9.4.5

11.4.2

3.1.2
4.35.2

53
9.3.5

932
933

54
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Vi Vi, Vi
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Zgg

Zy» Zygon
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Zy, Ziow
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Zout» Zout
s

Normalized resistance, R/Zg
Cylindrical coordinates
Voltage standing wave ratio (V.S.W.R.)
Gap or parallel line separation
Scattering parameters
Even- and odd-mode scattering parameters
General muld-port scattering parameter
Transmission coefficient

Transmission (ABCD) matrix

Noise temperature

Microstrip line thickness

Time

Voltage transmission coefficient for arbitrary 8
Mason’s U-function

Unilateral approximation check parameter
Surface wave transverse decay coefficient
Real part of T" for the Smith Chart derivation
Voltage

Forward, reverse and transmitted traveling wave voltages
Input and output voltages on a transmission line
Even- and odd-mode input and output voltages
Load voltage

Voltage at port n

Open-circuit source voltage

Column matrix of point potentials

Imaginary part of " for the Smith Chart derivation
Phase velocity

Microstrip line width

Width of a 502 microstrip line

Reactance and its normalized value

Cartesian coordinates

Transmission line characteristic admittance
Characteristic admittance of line n

Input and output admittance

Load admittance and its normalized value
The n™® admittance and its normalized value
Transformer characteristic admittance
Admittance or y-parameters

Transmission line characteristic impedance

Characteristic impedance of line n

Even- and odd-mode characteristic impedances
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2.1.1
7.3
2.11
134
221
11.6
421

8.4
11.54
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452

6.2

1.2
8.2
8.2
1.3.1
2.1.3
2.14
3.23
6.2
123
3.13
83
6.2

1.4
6.4
1.4
14
74

9.4.3

2.2.4
1.2
6.4
8.2

Characteristic impedance of air-filled (free space) transmission line  3.3.2

Characteristic impedance of a high impedance line
Input impedance and its normalized value

Load impedance and its normalized value
Characteristic impedance of a low impedance line
The nt® impedance and its normalized value
Output impedance and its normalized value
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6.8.1
1.4
13.1
6.8.1
6.10
2.1.2
2.1.4



xviii  Symbols
Zg
Zseries: Zshunt

Zseries» Zshunt
Zstub» Zstub

FTPR L RN

L. Ty

Tin, Tout
n.r

T (opt), Ts(opt)
rn

=2

(©), Axq)

o~

m
..gé'.’ SO B>

ot €

< (]
IEX
°

<

SeoPavEErrrron
>
[ d

Oy, @,
o

Surface impedance
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Attenuation due to conductor loss

Attenuation due to dielectric loss

Phase coefficient, radian.m™!

Voltage reflection coefficient
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Input and output voltage reflection coefficients

Load and source voltage reflection coefficients

I, and I for simultaneous conjugate matching

The n® reflection coefficient

Propagation coefficient, y= ot + jB

A function of I’

Determinant of a matrix

Surface roughness

An increment of any variable, n

Line correction for capacitance and inductance

Skin depth

Angle of the dielectric loss tangent, tand

Permittivity of free space = 8.854x 10712 F.m™!
Effective relative permittivity
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Relative permittivity
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Even- and odd-mode transmission coefficient phase angles
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A general phase angle or electrical length

Low-pass filter prototype value

Wavelength; the microstrip line wavelength

Free space wavelength
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Wavelength for a plane wave in the substrate material
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Permeability of free space = 4% 10~ H.m™!

Charge density

Conductivity

Discrete potential at node n

Fractional bandwidth

Angular frequency in radian.s™!

Center frequency

Band-edge frequencies

Band-edge frequency in the prototype filter
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422
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Transmission line
theory

1.1 INTRODUCTION

The basic elements of transmission line theory that are applicable to a wide variety of
wave propagation problems are reviewed in this chapter. This basic theory will be
built on in later chapters to describe the propagation properties of microstrip lines. A
microstrip line is illustrated in Figure 1.1. The generation and processing of signals
at microwave frequencies, say from below 1.0 to beyond 30GHz, these days are
typically achieved in microstrip circuits using elements constructed from microstrip
transmission lines and combined with semiconductor components. The line widths
and substrate thickness are small while the circuit line lengths are generally a
significant fraction of a wavelength. The planar geometry is particularly suited to
production using photographic techniques to give the line patterns on a copper-clad
substrate. At the upper end of the microwave range, complete subsystems including
the active devices may be fabricated onto a single semiconductor slice. Within this
book, however, emphasis will be placed at the lower frequencies to give a solid
framework for the understanding of circuit design and operation.

In this chapter on the basic theory of transmission lines, a two-conductor
transmission line with a uniform dielectric material is considered. The complexities
of a transmission line with propagation in a mixed air/dielectric environment as
shown in Figure 1.1 will be described later in Chapter 3.

s+———— STRIP CONDUCTOR
+— DIELECTRIC SUBSTRATE

~————— GROUND PLANE

Figure 1.1 A microstrip transmission line




2 Chapter 1

»l
1+A1 |

'|=l Az
=AW
!
GAz

vA
CAz |

Figure 1.2 The equivalent circuit for a short length of transmission line

v V+AV

1.2 PRIMARY AND SECONDARY PARAMETERS

Consider a transmission line that has the distributed parameters for a short line length,
Az, as illustrated in Figure 1.2. This incremental model is valid, provided the
following conditions and assumptions are true:

i) The line is a distributed system. Each infinitesimal element of the line is identical
to all other similar length elements. '

ii) Atany point along the line, the voltage V and current I are meaningful quantities.
This is satisfied for a two-conductor transmission line that has a uniform
dielectric material and is operating in a mode where all the fields are in the
transverse plane (i.e. a transverse electromagnetic or TEM-mode). The voltage
V= —JE.dl may be evaluated along any path between the two conductors. The
current is the total longitudinal current flow in each conductor.

iii) The inductance, capacitance, resistance and conductance per unit length (L, C, R
and G) exist as the primary parameters of the line. The propagation coefficient ¥
and characteristic impedance Z,, as secondary parameters for the line, will be
derived in terms of these primary parameters.

iv) All time variations will be expressed as eJ°" with d(. )/dt = jax(.).

The incremental voltage change for the short line length due to the current flow

through the series components is given by

ol
AV = {RI+ Lat]AZ (1.1)
The incremental current change, ignoring second order small quantities and assuming
a voltage V across the shunt components, is
A

Al = —{GV + C-——]Az
ot

In the limit as Az — 0, 9V/dz and 91/0z may be obtained.
The wave equation is an equation that gives the time and spatial dependence of
either V or I It is obtained for V by eliminating the current from these two first-order

differential equations. Having used 9/dt = jo, time is no longer a variable and 9/9z
becomes d/dz, giving

v (R + joL)(G + joC)V
dz? (1.3)

(1.2)

SOSP—

b A B A-rsn, s et

Transmission Line Theory 3

An identical equation to (1.3) with the current, I, in place of the voltage may.alsp be
obtained. A solution to the wave equation (1.3) for the voltage along the line is given

by

V = (Vpe % + Vet (1.4)
where y = {(BR+ joL)(G + joC) (1.5)
Likewise I = (Ige % + I &%)/ (1.6)

In general, the propagation coefficient y is complex, ie. ¥ =a+ iB. »i/ilh o the
attenuation coefficient in neper.m™!, and § the phase coefficient in radian.m™*. o
The term coefficient is used in preference to constant for o, B and vy as it .w111
soon be realized that, although these quantities may be constant with respect to time,
they are generally frequency, material and geometry dependent.
The neper for attenuation is based on using voltage, current or field strength
ratios expressed in terms of natural logarithms. For example

_ V(z = 1 meter) -1

a = ln{ V(z=0) neper.m (1.7)

In practice, however, attenuation is frequently expressed in decibels (dB), tl:le

bel being a power ratio expressed in terms of logarithms to the base ten. Thus, in
decibels

P(z = 1 meter _t
o = 10"’&0{_(1_?(3?07_1] dB.m (1.8)

Provided that the voltages in (1.7) are expressed at the same impedance level, then
8.686dB = 1.0neper. )

The solution (1.4) for the voltage from the second order differential equa_té)?n _hazs
two independent parts, with coefficients V¢ and V;. The first term,.Vfc.:J ez,
represents the forward wave that is traveling in the +z direction. Moving u:cgle +z
direction along a transmission line, the magnitude of the wave decays as .er ; and,
at any instant, the phase of the wave progressively lags by e~iBz wit}} increasing z.
The second term, V,el®'e¥Z, is the reverse wave traveling in the ~z direction and is
attenuated as z decreases.

From (1.1)
1 dv. .
L= mijel & (1.9)
. 1 ~ ot
1.e. I = —m [—'Yer LIRS ‘YVrC‘Yz] el® (1.10)
Substituting for y from (1.5) gives
G + joc)* - ot
1= [——-———R " ;(DL] x {er 1E Vreﬂ] e (111)

Considering either the forward or the reverse traveling wave, then the ratio of voltage
to current for the wave is a constant, known as the characteristic impedance. When
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(1.11) is compared with the solution of the wave equation in terms of the current
(1.6), the characteristic impedance of the line is seen to be

s - [A+jeL)
0" |G + joC (1.12)
V; V,
with Zp= =L o X
Ig I (1.13)
forward reverse
wave wave

Note that a backward wave, as opposed to a reverse wave, is one that travels and
decays in the +z direction while having a negative phase coefficient. Such a wave
will not occur in the context of distributed microstrip transmission lines.

1.2.1 Lossless transmission lines

A lossless transmission line has both perfect conductors (i.e. R = 0) and a perfect
dielectric material with no conduction currents flowing between the two conductors
(i.e. G=0). Therefore

%
Y = o+ JB = [(J(OL)(](DC)] (1.14)
giving o =0 neper.m”! (1.15)
and B = oVLC radian.m™! (1.16)
The characteristic impedance for the lossless transmission line from (1.12) is
1
- L]
Zo = [c] Q (1.17)

1.2.2 Low-loss transmission lines

It is usual for a practical transmission line to be considered as a low-loss line. The
mathematical requirement is that for the series impedance elements, R < oL, and for
the shunt admittance elements, G« wC. Inequality ratios of 1:100 will give
approximately a 1% error in the attenuation and in the change of the phase coefficient.
Since the resistance per unit length of a transmission line is dependent upon the depth
of penetration of the current in the conductor, and this depth is found in §4.2.2 to be
proportional to the square root of frequency, then the mathematical requirement for a
low-loss line becomes more easy to achieve with increasing frequency. For a
dielectric material, the ratio of the shunt current components, G/®C, is known as the
loss tangent for the material and is substantially constant over a very wide frequency
range for commonly used dielectric materials. Typical ratios for low-loss dielectric
materials are less than 0.001.

Under the low-loss conditions, the following expressions are obtained for the
secondary parameters. Rearranging (1.5) such that the loss ratios appear as small
quantities compared with unity, gives the propagation coefficient as

- e ]

(1.18)

- s et —
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Ignoring the second-order small quantities, and thus taking only the first two terms of
the series expansion for the square root, gives

TR R G
v Ee Lc[l ”’[2:»1. T 20C ] (1.19)
In this expression, with no first-order small quantity to be added to B
Blow-loss = Blosstess = ©OVIC radianm™ (1.20)
For the attenuation
~ oie|B G
a=o LC[2wL i 2mc] (121)
i - 1A -1
iLe. « =5 Zo + GZO] neper.m (122)

where the characteristic impedance is the lossless value given by (1.17).
The effects of loss on the characteristic impedance of the line are found from
(1.12), where using similar series expansions reduces (1.12) to
1
= LU i |-B- - G
Zo = [c] ! J[ZwL 20C ] (1.23)
However, the characteristic impedance given by (1.17) is normally used, even for
low-loss lines, since the perturbation terms allowing for the loss are insignificant at
microwave frequencies.

1.2.3 Velocities and wavelengths
The phase velocity
To travel along the transmission line at the velocity of the forward voltage wave and
maintain a constant phase requires

ot — Bz = constant (1.24)
This velocity is known as the phase velocity. Consider a point on the wave shown in
Figure 1.3 that has traveled from z; at t; to z, at t,. Keeping the phase constant

wt; ~ Bz; = oty — Pz, (1.25)

A -

/

Figure 1.3 Evaluating the phase velocity
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Now with the phase velocity given as the distance traveled by the constant phase front
per unit time along the line then, from (1.25)

v _ Zy — 2 - o
phase = -y B (126)
For a low-loss transmission line with B = oVLC
= A -1
Vphase = ?—LC m.s (127)

The phase velocity in an air-filled transmission line is approximately equal to the
velocity of light, c, in free space with ¢ = 2.997925x 108 m.s™!, The capacitance of
a line that is uniformly filled with a dielectric material, relative permittivity €, is
proportional to £;. Thus
C —1
v = ~—== ms
phase = Ver (1.28)

Substituting for L which is independent of the dielectric material, it follows from
(1.27) and (1.17) that for any dielectric-filled transmission line
1
Zy = Q

® 7 Vphase€ (129)
where C is the capacitance per unit length of the line. However, for both transmission
lines with losses and for waveguides modes where the fields are not entirely in the
transverse plane, the phase coefficient B is not proportional to . Therefore, in these
cases, the phase velocity will be frequency dependent and dispersion will occur.

The group velocity

It is necessary for a band of frequencies to be transmitted if information is to be
conveyed in a signal. Consider the case of a wave represented by the two
components

el@+dot-@+dpe) , oj(0-dot-B-dB2) - 3cosidmt—dB.z)el@-BD  (130)

The envelope of the wave is given by cos(dw.t —dB.z). Maintaining the phase of the

envelope constant leads to the envelope or group velocity, namely
= do
Vgrowp = dp

(1.31)

Any variation of the slope (dw/dB) with frequency across the spectrum of the signal
that is being propagated will result in "group delay distortion" and the information
content of the signal will be corrupted.

The line wavelength

For a forward traveling wave, the voltage along a lossless line is given from (1.4) by
Veel@=B2) — yeit (1.32)

At any time t, two points on a transmission line that are separated by one wavelength

have a phase difference of 2r. Therefore, at z and (z + ), with a phase difference of
¢=2x

ot - Bz = ot - Biz+A) + 2n (1.33)

R K B AP -

e P T, P P 1180 i TN N oY

giving
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B=%E or 7~=2T" (1.34)

where A is the wavelength along the transmission line at the frequcncy 'of operation.
In terms of the free space wavelength Ag and the relative permittivity €, of the
uniform dielectric material

and

e

= =T radian.m™!
P =%

(135)
A= A/VE m (136)

These two equations are applicable to the transverse electromagnetic (TEM) .modf: of
propagation only. However, they will also be used for micro§trip transmission lines
under quasi-static approximations by using an effective relative permittivity €efr to
replace €.

Example 1.1
A coaxial transmission line, filled with a uniform dielectric medium, has the
following primary parameters at 1.0GHz

L=250nH.m™!, C=95pF.m™!, R=1.6Q.m™ and G = 6001tS.m™!

i) Verify that the line may be treated as a low-loss transmission line. )

i) Calculate the characteristic impedance and the attenuation and phase coefficients
at 1.0GHz.

iii) From the phase coefficient, calculate the wavelength along the line and the
relative permittivity of the uniform dielectric medium.

Solution:

ii)

i) The line is low-loss at 1.0GHz if R< ol and G < wC. Now with
R:oL = 1.6: 2mx10°x250x107° = 1:982
G:oC = 6x107% : 2nx109x95x10712 = 1 : 995
it is seen that the low-loss inequality is well and truly satisfied.
From (1.17)
L)} 250x10'9]* 5130
w8 - [Bhee] -
From (1.22) !
1|16 —4
= = == 13
2 [51‘3 + 6x107%x§ ]
ie. o = 0.031neperm™ = 027dB.m™!
From (1.20) ‘
7
B = oVLC = 2nx109[250x10-9x95x10-12]
ie. B = 30.62 radian.m™
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iif) The wavelength along the line at 1.0GHz
= 2 2n
A= B " 3067 - 0.205m

and is seen to be less than the free space wavelength of 0.30m. Finally, from
(1.36), the relative permittivity of the dielectric medium

1.3 TRANSMISSION LINES WITH A LOAD TERMINATION

The equations for the total voltage and current on a transmission line are
V = Vee % + V,el? (137)

Vee 12 — V,elZ

Zy (1.38)
In (1.37) and (1.38), a time dependence of elot jg implied. The forward wave
Tepresents transmission along the line from the source to the termination or load at the
far end of the line. At the point where the load is connected to the transmission line,
a reflected wave may be set up on the line and will propagate back towards the
source.

Let a load impedance Z; be placed on a line of characteristic impedance Z,. It
is convenient to choose the load plane at z=0, as it is at this plane that the
relationship between the reverse and forward waves will be evaluated in terms of the
voltage reflection coefficient, I} . Thus, for a line of length [, the input to the line will
be at the plane z = -/, at which plane the ratio of total voltage to current will give the
input impedance while the ratio between reverse and forward waves will give an
equivalent input reflection coefficient. These parameters are illustrated in Figure 1.4.

and I = [fe™% + L&' =

Lin, Zin (ZO) I Z

- !

Figure 1.4 A transmission line with a load termination
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1.3.1 Reflection coefficients
At the load plane where z = 0, the load voltage and current are

VL = Vi + V; (1.39)
Vi - Vr

and Ipb =I+I or I = Z (1.40)

Therefore, at the load plane, the load impedance

VL Vi + V;

ZL = — = T

I Ve~ ¥
This equation may be written as

T N \/7A)))

T2 T (v (1.42)
where z; is the load impedance, normalized to the characteristic impedance of the
transmission line. Substituting for the voltage reflection coefficient at the load,
I =V / V¢

*Zo (1.41)

1+ 1L
LT 1o (1.43)
while rearranging gives the reflection coefficient at the load
ZL - Zo Z - 1

=777, = 7,71 (1.44)

The reflection coefficient at any point on the line and, in particular, at the inPut
to the line at z = -/ is the tatio of the reverse to forward wave voltages at that point.
In general, this value will be a complex quantity. Thus, from (1.37)

. Vee? VeV
T ovee T e (1.45)
giving Tin = Tie  at the input to the line. (1.46)

1.3.2 The voltage standing wave ratio

The voltage standing wave ratio (V.S.W.R.) is the ratio of the maximum to minimum
. A .
voltages of a standing wave on a transmission line.

The maximum voltage = | Vg| + |Vyl
The minimum voltage = Vi = |Vl
Hence, the V.S.W.R.
o v+ v
Vel - Vil (1.47)
1+ |I;
_ o _ L+ nl

1- (1.48)
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When the line is terminated with a matched load, i.e. Z; = Zj, then from (1.44) it is
seen that there are no reflections, I = 0, giving S = 1. Please note that in some
publications, the V.S.W.R. is defined as the ratio of the minimum to maximum
voliages, giving S< 1. In comparing (1.43) and (1.48), it is seen that when I_is real
and positive at a voltage maximum, then z; =S. Thus the input impedance at a
voltage maximum on a transmission line is

Zin = SZy (1.49)

Example 1.2

A 75Q characteristic impedance line is terminated with a load that has an impedance
of (68 — j12)Q. Calculate

i) the voltage reflection coefficient at the load,
ii) the V.S.W.R. along the line,
iii) the position of the first voltage minimum from the load,
iv) the impedance at the plane of the voltage minimum.
Solution:
i) From (1.44), the reflection coefficient at the load is given by
(68-j12) — 75 13.89 /—120.3°

I, = =
L 68-j12) + 75 143.5 /- 4.8°
ie. IL = 0.097/-1155°
ii) From (1.48), the V.S.W.R.
_ 1+0097 _
5= TTooe7r T 13

iii) The magnitudes of the forward and reverse traveling waves remain constant
along a lossless transmission line. At a voltage minimum the reflection
coefficient is real and negative, i.e. /£180°. If /is the distance of the voltage
minimum plane from the load, then I}, from (1.46) gives the reflection
coefficient at that plane, I,

Thus r = I’Le_jzﬁl
or 0.097/£180° = 0.097 /=115.5° x ¢~32P!
giving ~2Bl = 32—6%(—180 +1155) = ~1.126
Substituting B =2r/A, then

- LI126% _ ooa

4n
iv) At the voltage minimum, from (1.43)
_ ., 1+ . _
Z = Zol s with T = -0.097

giving Z = 617Q
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1.3.3 Related parameters

The effects of a given voltage reflection coefficient on a transmission line may be
interpreted in several ways. Taking a linear scale of | I'| as the fundamental quantity,
Figure 1.5 illustrates its relationship to other quantities.

140 414 -15 —+020 T 9%
T35 [ 1 Lo1s T
] +15 ] 1
T30 o7
+ T4
1as 116 ] 1 I
1 -+0.15 101
J20 417 ] +98
13
418
+1s -+
T
+19 1
] 1 4 0.05
410 420 40.10 1 +9
] ] 40.04
+12
+0.03
...._0.5 A 1 002 —t
+25
411 005 4001
+30 0005
440
Loo Ty 110 Lo Loo - 100
REFLECTED RETURN V.S.WR REFLECTION TRANSMISSION TRANSMITTED
POWER LOSS T COEFFICIENT LOSS POWER
% dB |y dB %

Figure 1.5 The various relationships between the forward and reflected waves on a
transmission line, given by drawing an appropriate horizontal line on the chart
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1) The reflection coefficient is associated with a standing wave created by the
forward and reverse traveling voltage waves as seen in (1.48).

ii) The reflection coefficient is associated with power being reflected back from the
load. In particular, this reflected power may be expressed as a return loss in dB.
The input match of a microwave component may be quoted either as an input
V.S.W.R. or as a return loss.

iii) Knowing the reflected power from the load, the transmitted power to the load
may also be given, either as a percentage of the input power or in terms of a
transmission loss in dB.

1.3.4 The transmission coefficient

At the discontinuity, represented in Figure 1.6 by an element in parallel across the
transmission line, the total voltages on either side of the junction must be identical.
Therefore at the plane z = 0, taken as a local reference plane

Vi+ Vp = Vi +0 (1.50)
since there is no wave reflected from the matched load back to the discontinuity.
With the transmission coefficient defined as T = V,/ Vg, it follows that

T=1+T (1.51)

where I is the voltage reflection coefficient just to the left of the shunt component.

Vg~
(Zy) Vi~  (Zp) Z,

Vi

DISCONTINUITY
AT z=0

Figure 1.6 Propagating wave voltages at a line discontinuity

Example 1.3

Consider a series element, Z, in an otherwise matched transmission line. Derive the
voltage transmission coefficient in terms of the voltage reflection coefficient at the
input plane to the discontinuity.

Solution:

As shown in Figure 1.7, let (Vg 1p), (V,Ip) and (V1) be the voltages and
currents of the input, reflected and transmitted waves respectively. For a series
connected element

L = I+ 1
Multiply both sides by Z; and note from (1.13) that V;=Zgl,, Vi=Zl; and
Vy=—Zgl;, which gives

Vi = i - V;

e e v

Transmission Line Theory 13

—I—ir'z_jl

L
L=
(Zy) ]Vf Ivr [Vt (Zy) 22,

Figure 1.7 A series impedance in a matched transmission line

d o o)
o Vi %
Thus T = 1 - T foraseries-connected element.

1.4 THE INPUT IMPEDANCE

The input impedance Z;;, for a lossless transmission line depends on three parameters:
the characteristic impedance of the line Z,, the electrical length of the line B/, and the
load impedance Z; . A knowledge of the variation of the voltage reflection coefficient
along a transmission line is used to derive the input impedance in three basic steps.
They are:

i) the reflection coefficient at the load is given in terms of the load impedance, using
(1.44),

ii} the reflection coefficient at the input is given in terms of the reflection coefficient
at the load, using (1.46), and

iii) the input impedance is given in terms of the reflection coefficient at the input.
The general relationship between the impedance at any plane along a
transmission line is related to the reflection coefficient at that plane, in the same
way as occurs at the load plane in (1.43).

Commencing at the input plane with step (iii) and progressing towards the load
through steps (ii) and (i), the following expressions are obtained

g _ o {1 +Tn) _ 1+ rLe-J'ZB’)
in 11 -1, 011 - e (152)
- (2, +Z)eP! + (zL—zo)e-J:W ‘
0@+ 29T = (7, - Zg)e B (1.53)
. Zicos(Bl) + jZysin(BD)
Zin = Z 0
giving in 0| Zocos(Bl) + jZ,sin(Bl) (1.54)

For admittances, take the reciprocal of each side of (1.54), rewrite each impedance
with the appropriate Z = 1/Y and rearrange to give
Y.cos(Bl) + onsin(B[)]

Yin = Yo Yocos(Bl) + j Y,sin(B)

(1.55)
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Example 1.4

Calculate the input impedance to a A/8 long 50 characteristic impedance line that is
terminated with a 100Q load impedance.

Solution:

L1

12

1.5

For a A/8 line, Bl = —2% x % -
for this particular case

%, giving cos(B)) = sin(B/). Thus, from (1.54)

Zin

it

7 Z+jZ,
02z + iz,

SOXM,
50 + ] 100

50/-36.87° = (40 - j30)Q

]

giving Ziy

EXERCISES

A lossless air-spaced transmission line has uniform, but unusual, conductor shapes and a
capacitance of 100pF.m™!. What is the characteristic impedance of the transmission line?
Derive equations that relate the following terms to the reflection coefficient magnitude, |T'|:

i) VSWR,

i) percentage power reflected,

iif) retum loss, in dB,

iv) percentage power transmitted,

V) transmission loss, in dB.

Evaluate each of these quantities for | I'| =0.01, 0.1, 0.3 and 1.0.

i)  Calculate the input V.S.WR. at the input of a perfect 10dB altenuator, when its output is
connected to a line terminated in a short circuit,

ii)  If the attenuator is not perfect but has an input V.S.W.R. of 1.05 when it is terminated by a
matched load, what is the possible range of input V.SW.R. when the attenuator is
terminated by a variable position short circuit?

A transmission line termination in the form of a non-ideal short circuit gives a V.S.WR. of

200. What is the equivalent power loss compared with a perfect short circuit? If there is an

additional 0.1dB distributed attenuation between the short-circuit termination and the

measurement plane, what will be the measured V.S.WR.?

From (1.54), deduce Z;y, for the following special cases of terminated transmission lines:

) Find Z;,ifZ = Z, for all values of /.

i) Find Zy,, if Z, = for I = A/4 and A/2.

1) Find Zip,if Z, =0 for /= A/4 and A/2.

iv) Find Z;,, if Z =0and /= A/8. Is the input impedance capacitive or inductive in this
case?

V) Find Z;n, if Z, is real and { = 1/4.

1.7

1.8
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i)  Write individual equations for the three steps of §1.4, to include the effects of losses along

the line. ) ]
ii) Repeat Example 1.4, using the same parameters but also including a loss of 3.0dB per

avelength along the line. L ] )
iii) ;‘Ior the ?c}:leral gca\se where ¥ = o +jB, deduce the transmission line equation that will

allow for the losses along the line. ' - .
A lossless air-spaced coaxial line has a 500 characteristic impedance and is terminated with a
load impedance of (100 +j100) Q. Calculate the voltage reflection coefficient at the load, the
V.S.W.R. on the line and the position of the voltage minimum nearest the load at a frequency
of 1.0GHz. . o
Calculate the input impedance of a transmission line 0.3\ long »ynh a characteristic 1mpgdance
of 75Q and a load impedance Z; = 37.5+j52.5Q. Consider the two cases with the

; e -1

attenuation taken as (i) zero and (ii) 3.83dB.A™". .
Consider an arbitrary length of line with characteristic impedancevzo. .On the line, a loadz ?Ll
with a reflection coefficient I} ; gives an input impedance Z;y,,. Likewise Zj 5 — I} ; = Zjna.
I£Z1,Z;4 = Z¢, prove that T}, = ~T7 ; and Zig, Ziz = Z2. A
Vi, 1) and V,, 1, are the total voltages and currents at the input and output respectively of a
lossless A/4 line with characteristic impedance Zo.
i)  Show that forall source and load combinations, V=0 = I,=0.
ii) More generally, show that
i

=z
I, 0




2 Two-port parameters

2.1 THE SCATTERING MATRIX

In high frequency work, two-port networks are best characterized in terms of
scattering parameters, rather than in terms of the admittance or hybrid parameter
representations that interrelate the actual port voltages and currents in a simple
manner and are used at lower frequencies. Scattering parameters are defined in terms
of traveling waves, which are the natural variables to be used in a transmission line
environment, and are popular because:

i) Matched loads are used in their determination. At microwave frequencies
matched loads are relatively easy to realize, while the short and open circuits
required for the traditional low frequency parameters are much more difficult to
achieve and, furthermore, are more likely to make an active device unstable.

i) When only the magnitudes of the scattering parameters are required, it is not
necessary to be concerned with the position of the reference planes, that is, the
planes at which the device under test begins and the connecting test network
ends. The position of the reference planes only affects the phase of the scattering
parameters.

For these reasons and the fact that instruments to achieve the required
measurements are readily available, scattering parameters are used almost exclusively
at microwave frequencies to characterize both active and passive networks. In this
section, scattering parameters are defined and their evaluation is described. The
scattering parameters are introduced via traveling waves in transmission lines
connected to the network. The definition is then extended in §2.1.3 to include the
more general situation, where transmission lines do not necessarily exist. An active
source is described in traveling wave terms in §2.1.4, leading to the evaluation of the
available power of a source in §2.1.5.

2.1.1 Traveling waves and scattering parameters

Consider a two-port network with transmission lines connected to it as illustrated in
Figure 2.1. The traveling waves in these transmission lines will be the variables that
are used to characterize the two-port network.

For a linear two-port network, there are linear relations among the incident and

reflected wave variables that may be expressed in matrix form.
€r1 S11 812 | €1
er2 $21 522} | €2 (2.1)

1]
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o) @

Cjp ~ 1 TWO-PORT : &
]
ey - ! NETWORK | ~~>ep
| ———

Figure 2.1 Incident and reflected waves at the input and output of a two-port network

The resulting matrix is known as the scattering matrix and the elements as the
scattering parameters of the two-port network. Using an alternative notation, the
equation may be written as

1 Si S i1
n 5¢ Sp 2 (2.2)

In (2.1) and (2.2) the following four points should be noted as they are important in

the understanding of scattering parameters:

i) The convention is to take the waves traveling towards each port of the two-port
network as the incident waves.

ii) A traveling wave, whether incident or reflected, has both voltage and current
components, as illustrated in Figure 2.2. For the incident and reflected waves

€i1 Cr1
T T (2.3)

where Z; is the characteristic impedance of the transmission line. Note that the
currents are taken as positive in the direction of wave propagation. The currents
ij; etc., as traveling waves, may just as readily be used as the variables to obtain
the identical scattering parameters. In fact, the variables that are often used are
the a’s and b’s defined as

i1 .
a = m [= lil‘/Z_O]

SR> INCIDENT WAVE DIRECTION

<~ REFLECTED WAVE DIRECTION

Figure 2.2 The voltage and current components of traveling waves
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it
It

S NS SIS

iz .
ay ipVZy

b = = invZy
and b2 = = 1,2\/2(—)

(2.4)
Thus, in terms of the scattering parameters

b; Si Sr a;

b, SENEE 2.5)

Choosing these variables is convenient, because the expressions for power flow
are simplified. For example, in the incident direction

power flow = |a|?2 - |b}?
_ lal? el
Zy Zy (2.6)

The variables a and b are called "power waves".

iii) Even though the concept of traveling waves is considered, it must be remembered
that they are waves at some particular point, e.g. waves at the input plane. In
order to evaluate the wave variables at other planes along the connecting
transmission lines, the variables are multiplied by phase factors.

iv) Even though the discussion has been in terms of a two-port network, scattering

parameters can readily be defined for networks with more than two ports; see
Exercises 2.1(vii), 2.2 and 2.3. For example, for a three-port network

by si1 sz si3 |4y
baf T Isap sy sp3 [a
bs S31 832 833 | | 83 @7

The short-hand notation of (2.2) for the scattering parameter subscripts is not
suitable if more than two ports are involved.

2.1.2 Scattering parameter evaluation
From the defining equations (2.2), if there is no incident wave at port 2, then

1
§§ = —
€i1 | ep=0
and sf = 3
€1 |ep=0 (2.8)
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Figure 2.3 The traveling waves when the ouput is matched

Now, ej; = 0 is ensured by having a matched load at the output shown in Figure 2.3,
where all the connecting transmission lines have the characteristic impedance Z,.

Thus s; = the input reflection coefficient with the output matched
and s¢ = the forward transmission coefficient with the output matched.

Similarly, to obtain s; and s, the input and output ports are reversed for test purposes
to give

So = the output reflection coefficient with the input matched
and s; = the reverse transmission coefficient with the input matched.

Example 2.1

Calculate the Scattering parameters of each of the following two-port networks, all
normalized to Zy, as illustrated in Figure 2.4. For each case, it may thus be assumed
that the two-port networks are connected at both the input and output to transmission
lines of characteristic impedance Z.

Solution:
Circuit (a)

In the case of circuit (a), the phase change due to the propagation delay through
the 0.6A length of transmission line with no reflections for the input or output

(zy) (Zy) Zo% (Zo)
k—— o062 —o =3t |2
(a) (b)

Zy/2 27,
M Wy
Z, Zy
e—— a1=0 — — Al=0 ——]
(c) (d)

Figure 2.4 Two-port networks, the scattering parameters of which are to be evaluated

.

i
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3 A follows that ey = (2/3)e;;. Thus sg=2/3. By virtue of the symmetry of input to
8 = 4 — output, s, and s in Figure 2.5b are identical to s; and s respectively.
The scattering parameters of the zero length section in Figure 2.5b are thus

(2Zy) (Zy) Zy (Zy) (Zy)
1
- 3 3

SN (a) 2

3A - _ R A
[A—T—+— AI;\—O —+—?—>|

To get the scattering parameters of the full circuit in Figure 2.5a, the scattering

e~ -~rgj, =0 parameters for the resistor in a zero-length of line are modified by the addition of

(Zy) e e Zy : appropriate phase factors. The phase shift inroduced by a 3A/8 length of line is

: r> Zg (Z0) § 135°. Comparing the e;;’s and e;;'s for the two-port networks in (a) and (b), the

| Y : ej; in (a) leads the e;; in (b) by 135°, :avhile the ey in (a) lags the ep; in (b) by

IF Tin (b) i 135°, making the s; = —(1/3)e77°°. Similarly, the additional phase shift

it Figure 2.5 Evaluating the scattering parameters of Figure 2.4b. (a) Figure 2.4b embedded i introduced to sf (and s;) is —(135°+90°) and to s, is 2 x (~50%), making the
into two transmission lines of characteristic impedance Zgy. (b) Evaluating the scattering : scattering parameters of the complete two-port network in Figure 2.4b

I parameters of the central part of Figure 2.5a. H

3 e7i270° 3, e—j225°

2 o J225° i o-j180°
ports, i.e. connected to Z lines, is 1.2x radians. This is represented by ¢ 12m iy

. . ircui
the scattering matrix Circuit (¢)

The scattering parameters of Figure 2.4c will now be evaluated. The electrical

0 ¢t length of this two-port network is zero (i.e. Al = 0). Again, connect transmission
eil2r g lines of characteristic impedance Zg to the two-port network and match the output
. . . ) L. ; line. Now, s; is given by I}, in terms of Z;;,, where Z;; is equal to Zy/2 in series
This case is so simple that a formal solution is not necessary. with another Zo/2, the latter being due to the parallel combination of the Z,
Circuit (b)
To calculate the scattering parameters for circuit (b), connect transmission lines : I Al=0 *
of characteristic impedance Zj to it as in Figure 2.5a. First of all, calculate the AN
scattering parameters of just the section containing the resistor Z( connected (TEST INPUT) €j) ~~—» Zy/2 «~rep=0
across the line, redrawn as a line of zero length in Figure 2.5b. For this section of ey = Sigip < |V Zy Va| ~~>en=V, Zy
zero length, s; is given by the input reflection coefficient I3, with the output =RV =(Hey
matched, i.e. I}y in this case is given by
p o Zn=% ‘ (Z0) v,=eya1+sp vi=coy, (%)
i Zin+Zg (2.9) ej ass;=0 eix+ep (a) ‘
i In this case, Zj, is given by the resistance, Zg, in parallel with the load Zo/2
impedance Zg, i.e. Zj, = Zy/2. Thus Wy
s: = I, = -4 Vi= GOV, V, = (e <—~~¢j, (TESTINPUT)
1 1 3 Z -~ = (Ke: Z ~— e =— (Ya)e;
0 P (Aein 0 T2 i2
To evaluate s¢, an incident wave ej; is launched in Figure 2.5b and the total e
voltage that results at A-A, as a result of e;; and the reflected wave e;; being
simultaneously present at A-A, is evaluated. This total voltage is thus (Zo) L Al=0 | (Zo)
(1+s)ej; = (2/3)ej;. Looking at A-A from the output side, the total voltage at (b)
A-Ais also equal 10 ep; + ej, the sum of the incident and reflected waves at A-A: Figure 2.6 The circuits for evaluating the scattering parameters of Figure 2.4c, showing the

at the output side. Since ej, =0, there being a matched load on the output side, it circuit (a) for s and s, and (b) for s; and sq

.

! i
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across the line and the matched line. This makes Z;, = Z,, leading to s; = 0.
Referring now to Figure 2.6, since 5;=0, it can be seen that the total voltage at
the input, V,, becomes equal to €;;. As Zy/2 and Zy)|Z,, form a potential divider
network, this in turn makes the total voliage at the output

Zollzo |, _
Zo/2+ Zy||Zo | 1
The matched load condition ensures that ej; =0, making e, =V,. Thus
sg=ep /ey gives sg=1/2.

To determine s, and s;, apply an e;, test incident wave to the output and
terminate the input in a matched load as shown in Figure 2.6b. Thus the output
has become the input for test purposes. Proceeding as before, the oulput
impedance in Figure 2.6b is determined to be

Zow = (Zo)(Zg+2Zy/2) = 062Z,
Zout~Zg
Zout+Zo

vV = &

=

giving So = oy = = -0.25

Thus, e;, produces a total output voltage
V2 = (1 + SO) €p = 0.75 €2
With the potential divider network Zy/2 and Z, at the input, the total voltage at

the input V; =(1/2)e;,. Since again ey, =V, this makes s.=1/2. Hence the
scattering matrix for Figure 2.4c is

0 3

L
2

B

Circuit (d)

Turning now to Figure 2.4d, proceeding in exactly the same way as for circuit (c),
the matrix for the scattering parameters of the network is given as

N 3w

In this last example the solution was obtained in a physical manner by following the
various traveling waves through the networks. Scattering parameters may also be
obtained by solving the circuit equations in terms of voltages and currents and using
the general scattering parameters definitions of the following section. Yet another
way of calculating scattering parameters would be to calculate any other set of two-
port parameters, say the admittance, hybrid or transmission parameters, and to use
conversion formulae to convert from them to the scattering parameters. Tabulations
of such conversion formulae exist (e.g. Gonzalez {2.2]).

However, the approach that has been adopted in this example is recommended
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for the majority of cases, because it is quite simple and provides considerable
physical insight. Other techniques of calculating scattering parameters are just
mathematical manipulations, and do not provide such physical insight.

2.1.3 General definition of scattering parameters

As a starting point, the total voltage V; and the total current I; at the input are
evaluated in terms of the traveling wave components at the input. The power wave
variables, and thus the scattering parameters, are then expressed in terms of these port
voltages and currents. In Figure 2.1, while only the voltage components of the
traveling waves are labeled, it must be remembered that the waves have both voltage
and current components, as illustrated in Figure 2.7. The voltage and current at the
input plane are given by

Vi = ey toen

and I, =i — iy (2.10)

with a similar pair of equations for the output plane. Solving for the traveling wave
voltages and currents and using (2.4), it is found that the power wave variables are
given by

v, + Zol
a = _—_Z‘fz_o
Vi - Zol
Vy + Zol,
24z,
Vo - Zgh
b, = Y7 (2.11)

e (a)

Vi (®

Figure 2.7 (a) The traveling wave components at a point on a line and (b) the total voltage
and current at that point
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) These equations may be regarded purely as a transformation of variables, i.e.
given the total voltages, V, and currents, I, the a and b variables are obtained and used
to define .the scattering parameters using (2.5). This may be done even at d.c, but
then the interpretation in terms of traveling waves is not as immediately obvious,
though sugh an interpretation is still possible. It is important to note that this
Fransformatxon of variables involves a normalizing impedance Z;. In principle, this
lmpedam.:e can be any impedance, but a physical interpretation will only be possible
for certain selected impedances. In general, Zy may be complex, in which case the
definition of the power wave variables is as follows

Vi + Zy1,
a = ———
! 2VReZ,
Vi - Zgl,
2yReZ,
a V2 + ZO 12
2 2vReZ,
Vv, - Z31,
2VReZ, (2.12)

There is no requirement in (2.12) that the normalizing impedances must be the same
at both the input and output.

To obtain a physical interpretation in the general case, the following result, to be
proved as Ex;rcnse 26 is used. If V and I are the voltage and current at the terminals
of a source with an internal impedance Z, as illustrated in Figure 2.8, and

Lo Yz
= R
V- Z51
2VReZg (2.13)

then Re(VI*) = [a]? - |b)? (2.14)

b, =

b,

_ Re(VI¥) is the power delivered by the source terminals. This power becomes the
av*al!able power from the source when the load connected to the terminals is equal to
Zg ,zm. which case b = 0. Thus it is seen that |a]? is the available power of the source,
]al. is the power launched by the source towards the load and, if the load is
conjugately matched to the source, all of this power is absorbed and none is reflected.

Zs I

MWy
+
Tv

Figure 2.8 An active source
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y4
YA

& ~d Z, (1)
-« b

-—-I |-—AI=0

Figure 2.9 The traveling waves in a line of zero length

For other loads, some power, i.e. |b|2, is reflected back and the net power absorbed

by the load is |a|? - |b}%

To summarize, the a’s and b’s are defined in terms of terminal voltages and
currents at the input and output with the scattering parameters being defined in terms
of the a’s and b’s. A physical meaning to the a’s and b’s may be attached when the
normalizing impedance Z; is chosen in specific ways:

i) When Z; is chosen to be the characteristic impedance of a transmission line, then
the a’s and b’s are the incident and reflected waves in the transmission lines
connected to the two-port network.

ii) When Z; is chosen to be the impedance of a source, then the a’s and b's may be
interpreted as power waves in the manner discussed above.

iii) When Z; is some other impedance, the a’s and b’s still have meaning, if a
transmission line of infinitesimal length and characteristic impedance Z, is
thought of as connecting the source to the two-port network. The a’s and b’s are
then the traveling waves in this infinitesimally short length of line, as shown in
Figure 2.9.

This concept of waves in a line of zero length will be very useful on a number of
occasions in this and following chapters.

2.1.4 Active source representation

Take an active source with an open-circuit voltage Vg and internal impedance Zg
connected to a line of characteristic impedance Z and producing at its terminals the
voltage V and the current I. The a and b waves that result in the line are a function of
the parameters of the source and also of the termination at the other end of the line.
The source and the load each provide a linear equation connecting a and b. The
solution of these two equations gives the a,b that result.

The relation between the a and b waves imposed by the parameters of the
source is now obtained (i.e. the source is characterized in traveling wave terms).
Referring to Figure 2.10, solve for a and b as before and further impose the condition
Vs = V + Zg1. This yields

a = ag + Iyb (2.15)
es Zy

h = = Vi
where ag N €s SZo + Zs (2.16)
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Zs (rs) 1

Was
+
Vs v| ~=Isb }a

<+~~b

(2Z9)

Figure 2.10 The traveling waves at the terminals of an active source

and Ty is the reflection coefficient of Zg with tespect to a line of characteristic
impedance Z,.

The wave ag is the wave that is launched into a line of characteristic impedance
Z, by a source Vg, Zs. The wave ag is the only wave that travels in the line if the line
is matched at the other end. If there is 2 mismatch at the load end of the line, then the
wave b is reflected back towards the source. In turn, b is reflected at the ;ource to
prc')dt.lce the wave I'sb. The wave Ixb combines with ag to give the resultant wave "a".
It is important to note that the (sinusoidal) steady state situation is being considered
and the traveling waves that are being referred to are waves that have resulted in the
§teady state. Transient conditions are not being dealt with here. The reflected wave b
1s produced by the total wave "a" and not Jjust ag.

2.1.5 Available power

Take an active source Zg, characterized alternatively by a reflection coefficient I,
connected to a load Z; (I ). Imagine the connection between the two as consisting of
a line of infinitesimal length Al and characteristic impedance Z; and supporting the
traveling waves a,b as illustrated in Figure 2.9. The source will deliver its available
power, P,y , when Zg = Z: {or equivalently when I = I}%).

Now a = ag + I3b (2.17)
and b= Na (2.18)
which gives a = 5 _
1 - I (2.19)
and the power into load = [a]? - |b|? (2.20)
1 - | j?
- laslz[ l LI 2}
|1 - LTy | (2.21)
Setting Iy = I7" together with Al = 0 gives
P = las|?
av — 2
1 - L) (2.22)

Note
The v&ford "matched” may be used in two different senses: (a) matching for no
reflection, or (b) conjugate matching for maximum power transfer. Sometimes
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matching in both senses is accomplished simultaneously. In general, however, one or
the other but not both may be achieved.

Further insight on this point is provided by the following result that is to be
proved as Exercise 11.1. For a lossless reciprocal two-port network

L =Tn & TIL = Iy (2.23)

This result shows that if, say, one has a source with an internal impedance Z,, that is
to be conjugately matched to some load Z, then, if a lossless network that is inserted
between Zj and Z;, achieves conjugate matching at the Z; end, conjugate matching
will also result at the Z end. Further, since Z is real, this means that the source sees
Z and the input is matched for no reflections as well. One thus can achieve matching
for no reflections and conjugate matching at the same time if a lossless network is
used for the matching.

2.1.6 Some comments and a few useful results

i) The reader will have noted that the scattering parameters of the circuits in Figures
2.4c and 2.4d, as worked out in Example 2.1, give a symmetrical scattering
matrix with s¢= s, even though the two circuits are decidedly non-symmetrical.
This is because both these circuits are reciprocal, i.e. circuits that obey the
reciprocity theorem. Any circuit consisting of resistors, capacitors, inductors,
transformers and lengths of transmission line will be reciprocal. Any circuit that
happens to be symmetrical, whether reciprocal or not, will of course have a
symmetrical matrix, but the converse does not hold.

On the other hand, an active network such as a transistor will not be
reciprocal. In fact, for a transistor it is desirable for s to be as large as possible
and for s to be as small as possible. A two-port network for which s, =0 is
known as a unilateral two-port. Thus a unilateral two-port network is one that
works only in one direction, while a reciprocal network is one that, in a sense
(and in a sense only), acts equally well in both directions. Unilateral and
reciprocal two-port networks may be regarded as the extreme limits between
which the action of most active two-port networks lies.

Sometimes deliberate steps are taken to unilateralize a transistor, i.e. making
s; = 0, for stability reasons. Unfortunately, in general this can only be achieved at
a spot frequency and unilateralization over a broad band is not possible. One
then settles for the next best thing, namely the minimization of sy. This is known
as neutralization. Neutralization can thus be regarded as imperfect
unilateralization. Finally, one may just simply assume s, = 0 for design purposes.
More will be said about this unilateral approximation in Chapter 11.

ii) [S]1is a unitary matrix for a lossless network, as shown in Exercise 2.5.

iii) Input and output reflection coefficients of a two-port network, see Exercise 2.4(i),
are given by
SrSf
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and Tout = So =
193 (2.24)

Thus Tiy = f(Ty) and I,y = f(T), unless the network is unilateral, in which
latter case I, simply equals s; and I,y equals s, irrespective of I} and I5. This
result leads to a great deal of simplification in Chapter 11, when the unilateral
approximation is used in maximizing the power gain.

2.2 TRANSMISSION (ABCD) AND y-PARAMETERS

Although scattering parameters are undoubtedly the most useful and the most
commonly used parameters for characterizing a two-port network constructed with
microstrip lines, they do not always present the simplest way of dealing with certain
problems. Occasionally a more elegant description results when other parameters are
used. The authors do not believe in slavishly sticking to the exclusive use of
scattering parameters purely for the sake of consistency, when other parameters may
give answers more succinctly.

In this section, transmission and y-parameters are revised on the assumption that
the reader is acquainted with them. Transmission parameters are also used here, with
the aid of examples, to derive useful equivalent circuits for transmission lines.

221 Transmission parameters

The transmission parameters are most useful when two-port networks are cascaded.
Multiplying the matrices of the individual two-port networks (in the correct order)
simply gives the transmission matrix for the combination.

Given the (total) voltages and currents of the two-port network in Figure 2.11,
the transmission or chain matrix [T]is given by

Vi v,
= (7]
f -1, (2.25)
or in terms of the individual matrix elements

\2 AB)[WV,

L] {cD|]|-1 (2.26)

I, L
—p .1 o —t e
TWO - PORT

vi NETWORK V2

PORT 1 L "1 ponr 2

(INPUT) (OUTPUT)

Figure 2.11 The voltages and currents for a two-port network
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A, B, C and D are often used as the symbols for the individual matrix elements and
thus the transmission matrix is also commonly known as the ABCD-matrix and the
parameters as the ABCD-parameters.

It is important to note that the current variable on the port 2 (output) side is
taken as —Ip. This is so as to make the output current in the same direction as the
input current of the next stage in a cascade, thus making the matrix [ T ] of a cascade,
[T, ] followed by [T, 1

() = [»)[] (227)

To determine individual A, B, C, D parameters, either V, or I, is set to zero in
the appropriate defining equation to eliminate the parameter that is not required. Thus

A= L B = —Tl—
V2 |L=0 I |v,=0
Il Il ‘\‘\
C = -— D = — 1
V2 |L=0 -5 |v,=0 j (2.28)
Example 2.2

Derive the ABCD-parameters of a lossless fransnﬁssioq line of length 1.

Solution:
The voltages and currents at any point z on a transmission line are given by
(1.37) and (1.38) and are reproduced here for ¥ = jB.
V = Ve Pz 4y iz (2.29)
and I = IedPz 4 ez (2.30)
The resultant voltages and currents at the input and output ends (z=—!and z =0
respectively) are illustrated in Figure 2.12.
With the output open-circuited
k-1 = -1, =0

making I =1, Vi =V
V2 = Vf + Vr = 2Vf
1o 1,90 L L
——P - —— - -
N ip! -jp!
INPUT vV,  Vge VeeTd Vi| (Vi V,| outpuT
AT z=-] AT 2=0

Figure 2.12 The forward and reverse voltages and currents at the two ends of a
transmission line of length /
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= il —j
and Vl = Vfc-]B + Vre JBI - 2VfCOSB1 b V2 - 2012 V2
Thus AV T 2NZ, T Z, (2.32)
w’ V2 =0 and, of course, a; = 0.
Lo b A - D) + BYy; - CZ
. = cospl Thus 5 = - ol ) + (BY, 0
| v a |u=0 (A + D)+ (BYy + CZ (233)
; : Now with the output short-circuited b, 2

‘ 1 Vi + V. = VvV, = i and §f = — =
5 t+ Ve =V, =0 ; ©7 a|y=0 (A +D)+(BYy+CZ) (234)

So and s; may be derived from the expressions for s; and sg. All that is required is

i 1 making VE= -V, k= -1

f ’f L=k~ = 2k : to treat port 2 as the input for test purposes and invert (2.26), changing the signs
‘ . . : of I, and I, to give
| and Vio= Ve - ) = o vising) z v 5 [PB][v.

& é = —«

{‘, Thus B - _VII_ I, AICA|l-T (2.35)
: T2 [v=0 | where A is the determinant of the ABCD-matrix. Substituting the new
¥ \7 ; transmission parameters for the appropriate ones in the previously derived
=j T sinfl = . } Z, sinBj expressions for s; and s¢ gives
g f X ) (D - A) + (BYO - CZo)

i antl:(:hD ";’3}’ be determined ingsimil.ar manner, but in this example it suffices to : o = (A + D) + (BYy + CZy) (236)
:; o Baé t-el tvzfsoe-;)og net.worl; 183) reillprocal and symmetrical so that A =D and 24

N - = xercise 2.8), thus making C=ijY,si and S =

, ABCD-matrix is thus g jYgsinBl. The complete : r (A + D) + (BY, + CZy) (237)
;- A B cospl  jZ,sinpl

¢ b iYosinBl  cospl (231)

z Example 2.4

, Derive the IT- and T-equivalent circuits of a lossless transmission line.

Example 2.3 ; Solution:

A Derive expressions for the scatterin ; i -equi ircuit i in Fi i i

i g parameters of a two-port network in terms of it A symmetrical [T-equivalent circuit is shown in Figure 2.13, with the impedance

; ABCD-parameters. e X, in the series arm and admittances Yy, in the parallel arms. If the output is
j i Solution: short-circuited, then clearly
5 . Referrin i i : M

( g to Figure 2.11, if there is a matched load at the output, V, = ~ : Xy = —-

| ) = YoV, Ph V2 = Zo () or RS A

Then Vi = AV, - BL, = (A + BYpV,

X -

j and I = CV; - DL, = (C + DYy, S '\/\7\, i

! ]

; Vi + 241 V. '

P so that a, = —t 01 _ 2 , INPUT |V Y, Y, V,| outeur

; 1 2VZ, ZNIZ_O(A+BY°+CZ°+D) 1 b b 2

Figure 2.13 A symmetrical Il-equivalent circuit, drawn with an impedance jX, and

Vi - 2,4

V.
b, = = —2=(A +BY, - C
o—-CZy-D
27, 2+Z, o~ D) admittances j Yy,
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iZgsin(B) izoan(§)  jZoan(Bl)

i Yosin(B)

()

quxvalept circuits of a lossless transmission line (a) and (b)
wn are impedances in the series arms and admittances in the

Figure 2.14 The I1- and T-e
respectively. The values sho

parallel arms.
ie. Xa = B = jZOSinBI (238
-38)
If the output is open-circuited, then the voltage division ratio
L]
Yy v 1
Xa+ {LJ Vl =0 A
Yp
so that I+ XY, = A
and thus Yy, = A1
Xa
- cosBl -1
jZo sinBl
Since 1~ cosp! = 2 sin2( 8L inB! = 2 sin( 8L {
I sin?( ) ) and smBl—Zsm(%)cos(%)
Y, = J'Yotaﬂ(%)
(2.39)

The T-equivalent circuit may be derived by proceeding in a similar manner. The

II- and I'equlvaleﬂt circuits f
or the IOSSICSS transmission line are summarized in

222 The short line approximation

When B! <« 1, sinBi = = : N .
2.38) ge comes inf3 tanf3! = Bl. With these approximations, the right hand side of

iZoBi

]

ilL %(m«/Tc)l
[&]

jo(Ll)
(2.40)
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L
o 00 :l 00—
+% +% LiLI c
() (b)

Figure 2.15 Equivalent circuits of a short length ! of a lossless transmission line with
(a) the I form and (b) the T form

while similarly

jYBl = je(Cl) (2.41)
so that the equivalent circuits in Figure 2.14 reduce to those in Figure 2.15, involving
pure inductance L and pure capacitance C with

L = LI (2.42)
and C = Cl (2.43)

L and C are, of course, the total series inductance and the total parallel capacitance in
a line of length /.

The equivalent circuits of Figure 2.15 reduce further if Zy » |Zg], |Z,|, as is
the case for a high impedance line, or Zy <« |Zg), |Z, | for a low impedance line. A
high impedance line sees approximate short-circuit terminations, so that C can be
ignored, yielding Figure 2.16a. Similarly, a low impedance line sees essentially
open-circuit terminations, allowing L to be ignored and reducing the equivalent
circuit to Figure 2.16b. Thus a short length of short-circuit terminated line behaves as
an inductance, while a short length of open-circuit terminated line behaves as a
capacitance.

If there are large standing waves on a line, then the approximations in Figures
2.16a and b are also valid at positions of zero or negligible total voltage and current
respectively, for lines of any impedance. In circumstances when the approximations
of Figure 2.16 are valid, they continue to be valid, even if a small load impedance Z|
loads the output in (a), or if a small load admittance Y| loads the output in (b). That
is, provided

|z, | < oLl

or | Yol < oC! (2,44)‘
L=1LI
" L
TC = Cl
() ®

Figure 2.16 The equivalent circuit of a short length of (a) high impedance line and (b) low
impedance line
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,'“%”\_-, Y

Zy

I
N

Figure 2.17 The equivalence of a near-resonant line to a short line in cascade with a
phase-inverting transformer

then the immittance of the line plus load is
Zin = joll+ 2, in case (a)
or Yin = joCl + Y, in case (b) (2.45)

The short line approximations that have been developed in this section are important
and will be used in numerous situations in subsequent chapters.

223 The resonant line approximation

When 1 is of the order of A/2, one has a half-wave resonator. Unfortunately, the
direct application of / = A/2 to the circuits of Figure 2.14 does not yield a useful
result. This is because the equivalent circuit has to produce a 180° phase shift from
input to output when the line is /2 long. However, a useful result is obtained if the
transformation of Figure 2.17 is used.

Figure 2.17 states that a line of length A/2 +1 is equivalent to a line of length /
in cascade with a 1:1 phase-inverting ideal transformer, see Exercise 29. The
equivalent circuit for a line with small / has already been derived and can now be
used, with the proviso that / may be negative. When [ goes negative, L becomes
capacitive and C becomes inductive. Both these effects may be taken into account by

L g 01
. c
(a) 2L 5
L ]
L 2C
- %\2 IL 01
1
(b) L c

Figure 2.18 The equivalent circuits of a resonant length of lossless transmission line, with
(a) the I1 form and (b) the T form. For both circuits, L= Zo/(4fy), C= Yo/(4fy),
C=(1/odL)and L' = (1/6ZC), where @ is the frequency for which the line is exactly A/2
long.
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replacing L with a series-tuned circuit and C by a parallel-tuned circuit, as in Figure
2.18. Equating the immittance slopes of w(L!) or (x)(.Cl), as the case may be, to l}'le
immittance slopes of the corresponding tuned circuits, gives the values quoted in
Figure 2.18, after a little routine manipulation. It muzst also be remembered that I is
now a function of frequency, namely / = T vph Aw/ 0y for small frequency excursion
Aw above the resonant frequency wg. Similarly, as for the short-length lmf:, for a
high characteristic impedance resonant line the series-tuned circuits may .bc {gnored
and for the low characteristic impedance resonant line the parallel-tuned circuits may
be ignored.

2.2.4 Admittance (y) parameters

Referring again to Figure 2.11, the y-parameters are defined by
L yi vrl [ V1
13 ¥t Yo (V2 (2.46)

Any particular parameter may be determined from the defining .equation with either
V, or V, set to zero by short-circuiting the input or output respectively. Thus

I v =
2 T Valy=o
L L
= - Yo = o
7 W y-o V2 [v,=0 (247)

The defining equations (2.46) may also be used to derive the equivalent circuit in

Figure 2.19.
I, L
Vi %)’i ; 1 Vs K f ;)’f‘/l %Yo Va
l

Figure 2.19 The y-parameter equivalent circuit of a two-port network

EXERCISES

2.1 Calculate the scattering parameters, all nomalized to the characteristic impedance Zg, for the
following cases:
i)  Anideal 10dB attenuator that is matched to the characteristic impedance, Z;.
ii) A length of transmission line with a characteristic impedance, Z,

“—— N —

Z,

and, in particular, when nA = A/4.
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ifi) Anidealn: 1 transformer

* L]
—

e n:l z
0 TRANSFORMER 0

Check that 2 /2 line is equivalentto a 1 : 1 phase-inverting transformer.
iv) A series-connected impedance, Z, where

a) Z=2Z,,
b) Z=jwL. For this case, check that [S] is unitary.
V4
M
Z, Zy

v)  Alength of transmission line with a different characteristic impedance for
a) n=Y%,
b) nin general.

f— m —

Zy Zy
— ] —
YA

I —

vi) A gyrator, where V, = —~alyand V, = +al;. Check that [S}is unitary.

Iy I,
———

A > v,

vii) Anideal three-port circulator. Is [S] unitary ?
viii) An ideal isolator. Is{S) unitary ?
ix) The basic charge-control model equivalent circuit of a transistor.

i

gmV

i) Calculate the scattering parameters of the three three-port networks illustrated in (a), (b)
and (c) below. The three-port networks consist of combinations of microstrip lines, of
characteristic impedance Z, and length A, and lumped resistors of specified magnitude.
Normalize the scattering parameters to Z,. Ignore the fringing field effects at the junctions,

i) Compare these three circuits as power splitters on the basis of the results derived in
part (i).
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2

@ ®) © 3

2.3 Consider a 3dB quadrature directional coupler that has two planes of symmetry: aa and bb.

a
|
|
|
L b
b= 1
l
|
|
a

If ports 2, 3 and 4 are terminated in matched loads, an incident wave into port 1
a) produces no reflection at port 1,

b) delivers equal powers out of ports 2 and 3,

¢) port 3 output is in phase with port 1 input,

d) port 2 output lags port 1 input by 90°,

€) zero power is delivered out of port 4.

The circuit behavior when incident waves are applied to ports 2, 3 and 4 can be deduced from
symmetry considerations.

i) Calculate the scattering parameters of this directional coupler.

ii) By permanently terminating port 4 in a matched load, the three-port nf:twork consisting of
ports 1, 2 and 3 acts as a power divider/combiner. Calculate its scattering parameters.

iii) The directional couplers described above are used to produce a balanced amplifier as

illustrated below.
1 3 .
INPUT Amplifier 1
2 4 ['matcuED

LOAD

Amplifier 2
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The scattering parameters of amplifiers 1 and 2 are related thus:
8 & ) Si S
IS}, = (8], + Ssp 8, with [S], = S So

Evaluate the scattering parameters of the balanced amplifier, i.. between the terminals
indicated as input and output.

24 i) Prove the results given in (2.24) for the input and output reflection coefficients of a two-
port network, namely:

Ses¢
Tin = 8 1
S — —IT
SrSf
and Tout = 8o ~ R
S — "r—
s

ii) Derive the formulae for Tgand Ty in terms of the s-parameters.
Note: T¢ = . with an arbitrary load, T, .
1

iif) Use (i) and (ii) to derive [S] for a cascade of a pair of two-port networks.
iv) Use (i) to check the properties of a quarter-wave length of transmission line.
v)  Use (iii) to show that two gyrators in cascade are equivalent to an ideal transformer.

2.5 Prove that [S] is a unitary matrix for a lossless network, i.e. [S']T[S] =[1], where T stands for
the transpose and [ I] is the unit matrix.

2.6 Prove Equation (2.14).

2.7 Consider a four-port network with the scattering parameters spq; m,n=1,2,3,4 and having the
following properties:
2) Spmp=0form =n, i.e. the network is matched in every port.
b)  Smn = Sy, i-e. the network is reciprocal,
¢) [S]is unitary, i.e. the network is lossless.
Prove that at least one of the following is true
S4=53=0,8=53,=0and s;3=5,,=0

2.8 Prove that in terms of the ABCD-parameters, with the determinant of the matrix, A
i)  areciprocal two-port network has A = 1,
i) aunilateral two-port network has A = 0, and
iif) a symmetrical two-port network has A = 1 and A = D.

29 Show that a transmission line of length A/2 + lis equivalent to a line of length { in cascade with
an ideal 1 : 1 phase-inverting transformer, Figure 2.17. This may be proved by combining the
results of Exercises 2.1(ii), (iif), and 2.4(iii).

2.10 Starting with the equivalent circuit of a two-port network in terms of its y-parameters,
determine s¢ and s, in terms of y-parameters. In particular, show that
St oy
S Yr

2.11

[2.1])
[22]
[2.3]
[24]

{2.5]
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Consider the circuit shown below. . .
i)  First take 8 = 0 and use the result in (2.19) to derive the expressions for V;, V, in terms of

Vs, gand T;.
ii) Now take 6 # 0 and prove that
v Vs . I - I‘Le_jze
=0 “LLel®

\A [(1 ~Te)(1 +I"l)c_j°]
2

and o Tonne®
Ty Zg L v, Zo VZI Z, ()
Vs
L ] .
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Microstrip
transmission lines —
basic theory

3.1 INTRODUCTION

The .pnmaryA (L, C, Rand G) and secondary (y and Z,) parameters that are
asso.cmed with any two-conductor transmission line in a homogeneous dielectric
medium havc. been considered in Chapter 1. A microstrip transmission line may be
;t;zzr:s;tll.oglcal transformation in stages from the familiar coaxial line as is seen in

’I‘h.e coaxial line is normally analyzed in cylindrical coordinates with its
cond.ucm}g sutxrfaces lying on circles with constant radius. The current flow in the
coaxllal _lme is longitudinal, i.e. in the direction of propagation of the wave. A
longitudinal slot i.n the outer conductor has a minimal effect on the current and ﬁélds
A prqbe may be inserted through the slot to measure the electric field strength in the:
star'ldm.g wave pattern. This form of construction required close tolerances to be
maintained and was unsuitable for accurate standing wave detectors. The slab line
was devel9ped [3.1] specifically for its superior mechanical properties in the design

a1r—.ﬁlled slab line, the fields are confined mainly near the center conductor and deca

rapidly out towards infinity, allowing the field strength to be sampled with a moviny
probe tha‘t traverses longitudinally between the parallel plates. The balanced stri ling
has th; c.u'culfir center conductor replaced by a thin strip conductor and rovicfes a
u:ansmlssx'on line Structure that is easy to construct. With a thin center conguctor the
air gap.wﬂl be. minimal and the transmission line is essentially one with a unif’orm
dielectric medium. As practical transmission lines, both the slab line and the

Lo oo

A\anny S &K ~<~
COAXIAL
LINE SLAB LINE BALANCED MICROSTRIP
STRIPLINE LINE

Figure 3.1 Transmission line configurations
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balanced stripline will also support transverse electromagnetic (TEM) waves that may
travel in directions other than along the center conductor. An asymmetry in the line
structure may set up these unwanted parallel plate modes.

At first sight the microstrip line appears to be one half of a balanced stripline
configuration without the complication of the parallel plate modes. However there
are two further complications that arise and must be considered. The strip is
separated in practice from the ground plane by a supporting dielectric substrate and
the complete transmission line structure is no longer in a homogeneous dielectric
medium. While the fields are tightly bound in the vicinity of the strip, any
discontinuity in the strip geometry may set up either radiation modes or surface wave
modes across the substrate surface. The implications of these modes of propagation

will be discussed in §4.5.

3.1.1 The coaxial line
The primary parameters may be rigorously derived for a coaxial line that is uniformly
filled with dielectric material, Figure 3.2. The dielectric material has a relative
permittivity & with respect to the free space value, €)= 8.854x 1072 F.m™". The
coaxial line supports radial electric fields and circumferential magnetic fields, with a
longitudinal current flow in the conductors. The capacitance is derived from the
application of Gauss’s Law around the charge on the center conductor, g per unit
length, leading to the electric flux density, D, and the radial electric field strength,
E;. The potential difference between the conductors due to the charge leads to the
capacitance per unit length

9

C =
V-V, (3.1)
b b p
h V-V, = - _L_ . ar
where 11—V E!.Er(r)dr !Merﬁo . (32)
and a and b are the inner and outer radii. Thus it follows that
c 2me g, _—_—
T R (33)

Figure 3.2 Capacitance evaluation for a coaxial line
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In circuit and component design, the characteristic impedance, Z;, and the
Propagation coefficient, y, are required. For a lossless line, with primary parameters

L and Cper unit length

L):
%= [

and Y =jB = joVIC

(3.4)
(3.5)

Let Cq and € be capacitances of the transmission line configuration with and
without the dielectric filling respectively. For a homogeneously filled transmission

line
C = £ G

of the capacitance of the line as

1
L =
c200

(3.6)

The inductance per unit length for any transmission line is independent of the
dielectric properties of the line. From (1.27), it may therefore be expressed in terms

(3.7)

where the velocitg of electromagnetic wave propagation in free space is given by
€=2.997925x 10° m.s~!. Thus the characteristic impedance, Z,, is given by

7 [LJ S N
° 7 e Ve G (3.8)
C

with

Vv, =
e T Ve

For a coaxial line, substituting from (3.3) gives the characteristic impedance as

it

59.96
Z In(b/a)
0 '_—Er

Example 3.1

(3.9)

@ (3.10)

A 50Q characteristic impedance coaxial transmission line (0.141 inch Semi-rigid
coaxial cable) has inner and outer diameters of 0.914 mm and 3.00 mm respectively.

Calculate

i) therelative permittivity of the solid dielectric material between the conductors,
1i) the capacitance per meter for the line,
iii} the wavelength in the line at 100MHz.

Solution:
i) From (3.10), it is seen that
_ 159.96
& = [ 2
giving & = 203

2
In (b/a)J

. ?5‘%.'??’1-‘
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ii) From (3.3) 12
2ne € _ 2mrx2.03x8.854x10” Fm™!
€= Thom = In(3.28)

ie. C = 95pFm™

ili) For a transverse electromagnetic wave (TEM), propagating in a uniformly
filled dielectric line

_C~_ d ;\’ = AO
e T e MO T T
where Ay is the free space wavelength. In a coaxial line at 100MHz
A= 2 o2iim

Ve,

3.1.2 The symmetrical strip transmission line ‘
For the balanced or symmetrical strip transmission line, uniformly filled with
dielectric material, the strip is equidistant between the two .groqnd planes and
supported by a homogeneous dielectric material as illustrated in Figure 3.3. Tl llle
capacitance may be rigorously derived by conformal transfonnauqns that eventually
equate a quarter of the line geometry to an ideal parallel-plate capacitor [3.2].

If the strip has a width w and zero thickness and the separation between the two
ground planes, that are assumed of infinite extent, is 2h, then

c = 45,501%(%1 Fm! (3.11)
where k = sech %—2‘%] and (K)2+ ()2 = 1 (312)
and the function K(k), the complete elliptic integral of the first kind, is given by
1 o
Kk) = J‘ %
2 [0-oa-e)] 513)
| —— X
 ———
e {Fyma =0
£ — ¥ v
t [ T,
‘lrh Iénormal =0
- ~— -3
(a) ®)

. . .. . . _sectional
i 3.3 The symmetrical strip transmission line showing (a) the _cross-section
gt:g‘rg:try and (l:) th); symmetry plar?es where the normal component of electric field is zero
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While any degree of accuracy for a theoretical problem may be obtained using
numerical integration of the integrals, such integrals are to be avoided for
computational ease in practical situations.

For large w/2h ratio, from (3.12), k = 0. Now, from [3.3]

2
PR (C9 I Y <3
°"p( " R®) 16 *816] * (3.14)
Taking only the first term of this expansion gives
KKy _4,,_2
K(k) In2 = 3 Ink (3.15)
and in turn, using (3.12)
2 = 2 s exp | ExX
~y ik = n"‘[z TP % 2h ] (3.16)
= W _2
T oon T w2 (3.17)
KK) w2
Hence Kk) - 2" + 1:1"2 (3.18)
giving
- w2 -1
C = 4{»:1_50(2h + - an} F.m (3.19)

The first term represents the parallel plate capacitance while the second term is a first
approximation to the capacitance contribution of the fringing electric fields. The
errors involved in deriving (3.15) and (3.16) tend to cancel, so that the final result in
(3.19) is much more accurate than in each of the individual approximations.

For a small w/2h ratio, an approximation for the elliptic integrals [3.4] gives

2 [w)?]"
C = 21ter€0{ln [%%J-‘-K[%J } F.m™!

(3.20)
The distinction made by Wheeler [3.4] between wide and narrow strips occurs when
K(K')=K(k), i.e. k=K and thus k2= 0.25, giving w/2h =0.561. At this transition
point the wide-strip approximation, giving a capacitance value that is always more
than the true value, has an accuracy better than 0.2% while the narrow-strip value is
almost 0.5% too low. However, using (3.19) and (3.20), similar accuracies for the
two approximations are obtained if the transition is made when w/2h=0.5. Cohn
[3.5], using the same wide-strip approximation and a narrow-strip approximation
similar to (3.20) but without the second term, has a transition at w/2h = 0.35 with a
maximum error of 1.2%.

The characteristic impedance of a symmetrical strip transmission line given
below follows from the narrow and wide-strip capacitance formulae in a modified
form with a transition at w/2h =0.6. In an air-filled line, this w/2h ratio corresponds
to a characteristic impedance of 90.6. The impedance errors are now less than
0.1% for all w/h.
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2
59.96 [, {8 2n w X <06
Zy = NS [ln[ w +0.185[2h] ) Q, h (321)
and 1
94.18 {w_ 2 206
Zy = NS [Zh +0.44J Q, oh © (322)

Example 3.2

A symmetrical strip transmission line has a 6‘.0 mm wide center strip that has
negligible thickness. The strip is supported by dielectric sheets, £, = 2.32, betvsfee.n
two ground planes that are spaced 10.0 mm apart. Calculate the characteristic
impedance for the line.

Solution:
For this transmission line with w = 6 mm and h = 10 mm, the ratio w/2h = 06
As this represents the transition point between the narrow and wide strip
formulae, (3.21) and (3.22), the characteristic impedance using both equations
will be evaluated. From (3.21), the narrow-strip approximation gives

59.96 8 2
= == 0.185%(0.6 = 59.53Q
Zy N [ln 06| * ( )]
From (3.22), for the wide-strip approximation
-1
94.18
Zy = —/— {06 + 0.44] = 5945Q
° T e [

Thus taking an average value, the characteristic impedance of the symmetric strip
transmission line is 59.5Q.

3.1.3 The microstrip transmission line

For the microstrip transmission line, Figure 3.4, the transmission line is only p?.rtial‘ly
filled with dielectric material, with the material being between the strip and an.mﬁmfe
ground plane. Thus the solution for the line properties becomes a two-dfelectqc
problem. The concept of capacitance per unit length for a mixed d}elecmc )
transmission line involves a low frequency approximation that may not be valid when

STRIP w AIR
N,

Z DIELECTRIC
h MATERIAL
y €r

GROUND PLANE

Figure 3.4 The structure of a microstrip transmission line
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the cross-section dimensions of the strip become a significant fraction of the
wavelength of the transmitted signal.

Consider a substrate material with ¢ = £r€g and p = p,. Using Maxwell's
Equation, curlE = - B, and the condition on the air/dielectric boundary that the
tangential magnetic field component, Hy, is continuous across the boundary, then

OE, OE, ) 3E, O,
- = —pr.Hy = |-/ -—=
ox 92 | giel Ix oz | (3.23)
Since Dy is continuous across the boundary, then
JE, oE,
' dz diel B oz air (324)
JE JE E
and —= - =] = (1_gr)—",
OX fgiet x|y 9 |giet (3.25)

Since Ey is non-zero along the boundary and varies as ¢~ then the left hand
side of (3.25) is also non-zero, which can only be the case if there is a longitudinal
electric field component. Likewise, it may be shown that a longitudinal magnetic
field component must also exist. As it may be shown from Maxwell’s Equations that
each transverse field component can be expressed in terms of E, and H,, the general
field solution for the lowest order mode in a microstrip line requires all six field
components to be present.

At low frequencies with wavelengths that are long compared with the width and
height dimensions of the microstrip line, the right hand side of (3.25) tends to zero.
Consequently the longitudinal field components diminish in importance. Thus, 2 low
frequency or quasi-static condition exists where the field components are
predominantly in the transverse plane. This quasi-static condition is really a

particular example of a more general result (3.6]. From Maxwell’s Equations, it can
be shown that

2 2 2 2
T G N A 1. R
ox? dy? 922 A
where A is the wavelength.

When X is very much greater than the dimensions over which a substantial
change of geometry occurs, the last term on the left hand side of (3.26) tends to zero
and the equation reduces to Laplace’s Equation. That is, the field distribution that
results is equivalent to what would be obtained at d.c., allowing quantities like
capacitance to have meaning.

Furthermore, the confinement of the fields within the vicinity of the strip is only
slightly affected by changing frequency and the operation (9/0x) on any field
component remains essentially independent of frequency. In the context of microstrip
lines with a substrate permittivity of 2.5 and height of 1.5 mm, low frequency may be
below a few GHz. This will be discussed further in §4.4.

(3.26)
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3.2 MICROSTRIP CAPACITANCE EVALUATION

3.2.1 Using conformal transformations '

Consider two complex planes, w = (u + jv) and z = (x + Jy).'To ca}culate tife
capacitance of a transmission line in the z-plane, the stored energy in the electrostatic
field is evaluated as

2 2
$ergg I [[_8_\1] + [a_v] }dxdy = 1C(V, - vy)?

ox dy (327)

plane
where V| and V; are the potentials of the two conductors. The left hand side of (3.27)

may be evaluated once Laplace's Equation in two dimensions
v | Vv
gy Loy
ax? oy?
has been solved with the appropriate boundary conditions in the z-plane. Now the
complex function transformation
Flx+jy) = u+jv :
where F(z) is an analytic function of z, will transform (3.28) to an identical equation
in the w-plane, namely
v oW
oy oY
ou? ov? :
leading to a similar equation to (3.27) with an identica} v.alue .for the stored .enefgyt }lln
the w-plane. Thus the capacitance of the new transmission line conﬁgur.anol;1 in the
w-plane is identical to the original capacitance in the z-‘plane. Thl; 1( c:.jn,[ in
conjuction with the ability to make one or more 'transformatlo.ns that will lea ’ (l)ha
conductor configuration that is readily solved, is th; es§ent1al mgredxeqt o3 ) e
conformal transformation method. The method is d.escnbed in greater depth in [ : ].
A parallel plate capacitor with a platc? w1dtl'.1 w, separation 2h anld in 0?“
homogeneous dielectric medium, has an equipotential surface along the plane o
symmetry between and parallel to the two plates, l.’al'mer'[3.7]. T!le capacitance
one half that of the corresponding microstrip transmission line at a dlstancg h'fron; agri
infinite ground plane that acts as the equipotential surface. Black. and ngglgs { r.le
used this approach to develop the theory for a general finite w1dth‘groun hp ane.
Their method, while capable of giving an accurate value' for the capacitance, | alts two
limitations: namely, the line is completely immersed in a homogeqeous die ectric
medium and the method is a doubly iterative one, where a capacitance valu; is
assumed and elliptic integrals of a complex argument are evaluated, leading
an improved capacitance value. ) .
cvent?sgi{:i[gus appFr)oximatioFr)ls combined with C(.)nf.orrpal mapping were 1n.lrodu'ced
by Wheeler [3.4,3.9] to overcome these earlier llmltatnons, leafimg to relanonls mea;
simplified form that are suitable for either analysis or synthesis, as they no long

require the solution of elliptic integrals. )
! Of great importance was the recognition of the need not only for analysis, where

=0 (328)

(3.29)

=0 (3.30)
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;?:eeltc):ztn:cl::(l) ﬁzzp:nifhs are dv;ri\fed from the physical structure of the transmission
s ynthesis, obtaining the line dimensions for th i i
] | I i e desired ele:
requxrements,'u‘l particular for a desired characteristic impedance el
. a?n empmcgl f;)rmula for symhesi§ using thin strips [3.10], that has better than
:m'[?uchy and the correct asymptotic behavior for wide strips for all substrate
permittivities and for narrow strips for the high and low permittivity extremes

[3.4,3.9], is
8{78r+4A+ g +1)3
W lle, 0.81¢e,
h =
A
3.
where o0
Zy
A = exp m\/er + IJ -1
. . (332
For analysis, these two equations are reversed as )
Zy = —424. In(1+A
Ve +1 ) (3.33)
where A is now the positive root of .
2
AZ—M'[& A__EQ. &2 =0
e, |w 08le, |w| (3.34)

3.2.2 Using the finite difference method

The capacitance of any two-conductor issi i
transmission line may be found fi
Ik‘r;?v\vll(exdg;a g: ttl;le charge on the conductors and the potential difference betweenr?l::ma
Yy e potential function throughout the cross-secti ission
line, with the strip at a potential of on of the pround mission
. e volt above that of the ground 1
continuous function V i o on i e
Gomanuous (x,y) must be a solution to Laplace’s Equation in two
v @
2t -0
y X a.y (3.35)
f:l; ljicct3 t;)2 the appropnate' boundary conditions. For the finite difference method
-11, 3.12}, a fine mesh is superimposed on the cross-section of the transmission

line, Figure 3.5, and the continuous i i i
5.3, potential function Vi i
Oy, that has discrete values at the nodes of the mesh. " V) s replaced by 2 function
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The details of setting up the equations from which the node potentials, ¢,,, may
be calculated when there are unity and zero potentials on the strip and ground planes
respectively are given in Appendix 1. The total charge on either the strip or the
ground plane is required with its magnitude being equal to the line capacitance for a
1V potential difference between the strip and ground plane. To avoid any problems
with the edge discontinuities of the strip itself, the normal component of the electric
flux density, Dy, is calculated across the ground plane from the node potentials
adjacent to the plane. Integrating Dy, across the plane gives the total charge and hence
the line capacitance.

Compared with conformal transformations, a significant disadvantage of the
finite difference method is that the method only provides points for a curve that gives
the line capacitance as a function of the width to substrate height ratio for the selected
substrate material, rather than as an equation from which either accurate or
asymptotic behavior of capacitance may be determined.

An accurate solution requires the use of a very fine mesh with nodes going out
to infinity. The effect of a finite mesh size may be allowed for by observing the
behavior of capacitance as thc mesh size is reduced and extrapolating to an
infinitesimal mesh size for improved accuracy. Several approaches that avoid the
infinite cross-section dimensions are useful. A conducting boundary may be placed at
a large distance where the potentials are assumed to be zero. This form of
approximation represents a shielding enclosure around the line, as described in
§4.2.3, and is an ideal approach for its solution.

It is desirable to have the greatest density of nodes with their potentials ¢, in the
region where V(x,y) has the greatest variation and, in particular, near the edges of the
strip. This has been achieved both with a graded mesh size [3.13], which allows the
shielding box to be placed further away from the strip, and with a coordinate
transformation [3.14], which modifies Laplace’s Equation for the new coordinate
system, transforms infinity for both transverse directions to a finite distance and, by
using a uniform mesh in the new coordinate system, gives the greatest density of
nodes in the vicinity of the strip.

Example 3.3

From [3.14], when w/h = 1.0 and €, = 1.0, the extrapolated value for an infinitesimal
mesh size gives a microstrip line capacitance of 26.419pF.m™!. Compare this value
with that obtained using Wheeler’s empirical formulae.

Solution: :
This is an analysis problem where the formulae (3.33) and (3.34) may be used in
conjunction with

NI

F.
cZy ™

From (3.34)
A? - 64.0A - 15802 = O

Solving this equation for the positive root gives

A = 6638
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From (3.33)

42.4
Zy = — In(66.38 +1) = 12623 Q
N ) 3

Hence the microstrip transmission line capacitance from the empirical formulae

1
C=— = !
Zq 26.425 pF.m
A more accurate value using data from [3 15] gi i
C . gives a capacitance of
26.385pF.m™!. The three values are all in close agreement. F

_———

3.2.3 Using the method of Sub-areas

(;onsider an ideal uniform two-conductor transmission line such as the parallel plate
line of width, w, and separation, 2h, that is infinitely long and in free space. It has
been seen in §3.2.1 that the parallel plate line, now illustrated as a two-dimensional
problem in Figure 3.6, is related to the microstrip transmission line. The surface of
the conductors may be subdivided into a number of areas, i=1--n, that are ot
necessarily equal in size. For a unit length of line, each area may be represented by a
length, ds;, with a geometric center at (x;, ¥ It is assumed that ds; is small, such
that the charge density, p(x,y), along its length is constant and may be represented by
acharge at the center of the element

q; = pds; (3.36)
The potential V(x;, ¥;) at any point (x-,yj) due to each surface charge g; will be

evaluated on the assumption that the distance from the surface is measured from
(xi, y). Thus

T I
Vixi,y) = — dr = 9 rdr
o a[Er ' 2“"-05[ d (337)

9
= - In(r)
e (3.38)

The potential at any field point due to a line-sourc i
i - ¢ charge q per unit length is
thus evaluated by determining the electric field strength as a function of the rgadial

. /(’,‘i’ y)

9
—{dsif-
____________________ oh . FQUIPOTENTIAL
N SURFACE
O(X', y_j) ]

w
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distance from the source and integrating in (3.37) from infinity to the field point at a

radial distance r. The term, In(c0), for the lower limit of integration is constant and

present for all the calculations. Since the potential difference between two conductors

is the final requirement, the term will cancel out in the final capacitance equations.

For simplicity, the term is omitted throughout the intermediate stages of calculation.
Expressing the integral in summation form over the n point charges

Vi y) = - : > i Nk = )7 + (v - vy g
=1

2ne, (3.39)

A system of n-equations that represent the discrete form of the integral will give
the potential at each point on the conductors, (x;,y;), in terms of the charges on the
n-areas and the distances from them. The matrix equation

V=1[prlq (3.40)

is formed from (3.39), where V is a column matrix of the voltages at the points (x;, y;)
and q is a column matrix of the charges at (x;,y;). In this case as it is V that is
known, (3.40) is inverted to give
-1

q=[p]V (3.41)
With the V elements set in this case as either 1, summing q; for all i over one
conductor gives the total charge on that conductor. Hence the capacitance of the
line is determined. The method is explained with examples in greater detail in
Appendix 2.

3.2.4 Accurate capacitance results

The method of sub-areas has been presented in the previous section and is developed
more completely in terms of Green’s Functions in Appendix 2. In particular, the
two-dielectric problem that is important when there is a dielectric substrate is
developed. The important and accurate capacitance results for a microstrip
transmission line in free space as evaluated by Kobayashi {3.15] using this method,
are presented in Table 3.1.

Table 3.1 The normalized capacitance [3.15] and derived characteristic impedance for a
microstrip line in free space, g; = 1.0

w [}

W % Zy, Q
0.04 1.18587 317.683
0.10 1.43375 262.759
0.20 1.70270 221.255
0.40 2.09393 179.915
0.70 2.56365 146.951
1.00 2.97991 126.423
2.00 4.23158 89.028
4.00 6.52698 57.719
7.00 9.79686 38.454

10.00 129814 29.021
20.00 23.3628 16.125
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3.3 THE CHARACTERISTIC IMPEDANCE —- ANALYSIS

The equations that are presented here, and in §3.4 for synthesis, each cover the
complete range of microstrip line parameters that may be met in practice.
Discontinuities that occur in the equations, typically found in the literature. on
changing from narrow- to wide-line formulae are thus avoided. Such discontinu'ities
can produce problems in the computer simulation of circuits, These problems will
therefore be eliminated by using only the appropriate wide-ranging equation.

Table 3.2 Analysis formulae

Given w/h and with £, = 1, the characteristic impedance is given by
Zo = Zts = o (3.42)
where the exponent
6 .
x = 2:,) X; {in(wih)}’
i=
N
0 4.8394( 0)
1 —-4.5016(-1)
2 =7.7456(~2)
3 —6.5863(-3)
4 1.6510(-3)
5 2.3168(-4)
6 —3.7508(-5)
The X; coefficients with power of 10 for Equation 3.42,
Given w/h and ., the effective filling fraction, g, is given by
6 3
Q= 3 ¥ Qyx'yl
i=0 }=0 (3.43)
where X =In %+0.125} and y = 1-L
&
j
i 0 1 2 3
0 6.51309(-1) —~2.25160(~2) | -3.32199(-3) —3.85162(-3)
1 6.65212(=2) | -1.26976(-3) —6.80530(-5) ~1.03524(-3)
2 1.64039(-2) 2.59784(-3) 2.74253(-4) 6.52501(~4)
3 3.95737(-4) 6.69075(-4) 6.84457(-5) 3.34213(-4)
4 —1.84365(-3) | -2.1 1987(-4) 2.13720(~5) ~9.56514(-5)
5 —1.54945(-5) { -9.69139(-5) | —2.71033 (=5) | —3.65429(-5)
6 6.53285(-5) 2.47067(-5) 4.06141(-6) 1.01064(-5)
The Qij coefficients with power of 10 for Equation 3.43.
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Figure 3.7 The variation of characteristic impedance with w/h for a microstrip line in free
space

3.3.1 The microstrip line in free space

The analysis of a microstrip transmission line involves the determination of the
characteristic impedance of the line from the dimension ratio, w/h. At first, the case
of a line in a homogeneous dielectric material (free space) is considered. Using the
values for C/¢g given in Table 3.1, the variation of Zy with w/h can be derived from
(3.8). The results are also included in Table 3.1 and illustrated with the curve in

Figure 3.7.

A single equation that expresses Z; as a function of in(w/h) for w/h in the range
0.04 — 20 has been derived for this book through numerical curve fitting techniques
to fit the above results. The equation, covering most practical microstrip transmission
lines that are likely to be encountered, is given in Table 3.2 as Equation 3.42 together
with the appropriate coefficients. The accuracy of fit to the data points when the
parameters are in the ranges

0.04 : w/h : 20
317.7 : Z, : 16.13

is AZg = 0.04% r.m.s., with a peak percentage error <0.07% at any one of the eleven
data points.

3.3.2 The effective relative permittivity
In the previous section, the microstrip line was considered to be entirely in free space.
Now the effects of other relative permittivity substrates are considered in terms of an

effective filling fraction, q, [3.4].
If the whole region has a uniform dielectric material with relative permittivity,

€, then

7 = Zfs
07 e (3.44)
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Figure 3.8 The microstrip effective filling fraction fore, = 2.5

where Zg; is the characteristic impedance of a line that has the same dimensions but is
entirely in free space. The wavelength is reduced by the same factor. However, the
dielectric material does not completely fill the whole region but acts as a substrate
between the strip and the ground plane. Thus, electric fields are present both in the
air and the dielectric material and the stored electrostatic energy is divided between
the regions as a function of both €; and w/h. The line capacitance, Cy4, is related to
that when there is no dielectric material present, Cy, by

Ci = &G
where Ceff = 1 + q(e; - 1) (3.45)
The microstrip effective filling fraction, q, is thus
- (ecﬂ'“ 1)
(& ~-1) (3.46)

With a value 0.5 < q < 1.0, it is related to the portion of the electrostatic energy stored
in the substrate region and is both a function of w/h and weakly dependent on g,. It
is plotted as a function of w/h for € = 2.5 in Figure 3.8, where it is apparent that
q->1 as wh > o and q - 05 as w/h — 0. While this is true for all
permittivity substrates, the transition between the two asymptotic values is a function
of £, reflecting the permittivity dependence of the fringing fields at the edges of the
strip. Typical small but significant variations of the effective filling fraction as a
function of &, are illustrated in Figure 3.9,

The effective relative permittivity is required, not only for the evaluation of the
characteristic impedance, but also for the phase coefficient, B, and the transmission
line wavelengths. A two-dimensional polynomial fit to the results of Kobayashi
[3.15] for the effective filling fraction as a function of both w/h over the range of 0.04
to 20 and all €, is also presented in Table 3.2,

A number of examples and exercises in later chapters are based on a substrate
material with &, =2.5. Simplified formulae and data based on the results of Tables
3.2 and 3.5 are presented for convenience in Appendix 3.

Microstrip transmission lines — basic theory 55

\
\

i€
It
—_
=)
o

0.65

0.66
0.64 -4

=|€
1l
-
o

0.63 -
058

Effective filling fraction, q

0.57

0.56

|2
i
=}

055

0.0 05 ) 1.0
1
-2

T

Figure 3.9 The influence of permittivity on the effective filling fraction, with w/h as a
parameter, adapted from Kobayashi [3.15] (© 1978, [EEE).

Example 3.4 '
Two microstrip transmission lines that form part of a circuit are 1.0 ‘and 2.0 mm l\;\{u:(e
respectively. The substrate has a relative permittivity of 2.53 and is .1 .§S'mm thick.
Assuming that the strip thickness is negligible, calculate the characteristic impedance

and low frequency phase velocity for each line.

Solution:

Consider the 1.0 mm wide line where w/h = 0.6329. From (3.42), for this line
aspect ratio in free space

6
Zs; = exp [ZXi x‘]
i=0

with the X coefficients as given in Table 3.2, giving
Zgg = 1529Q for w = 1.0 mm

For any one €; value of the substrate, an equation for the effective filling fraction
as a function of w/h may be derived. Here, €; = 2.53. Thus

= (-1 _
y = I-g = 06047

with x = In(w/h) = -0.4574

¢

The double summation (2.43) may be written in the form

q = L Ax  with x = In(w/h+0.125)
i=0
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arameter for the curves. Here, the characteristic impedance Zg 1§ the a}ctrhal
Eharacteristic impedance of the transmission line for the g, .substrale: whx!e lZfs- 1sf e
characteristic impedance of a line that has the same dimensions but is entirely in free

l
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§ and with  A; = X Q¥  with y = 0.6047

s 1=0

|

Evaluating the coefficients, Aj, gives the values in Table 3.3.

! ' space.
2K Table 3.3 The coefficients, Ay, for y = 0.6047, ic. ¢, = 2.53
; i A i Aj Ver Zg
. : 0 | 635626(-1) | 4 | —1.98518(-3) 20 4 20
! : 1| 6.54995(-2) || 5 -9.20965(~5) 1 -
1 2] 1.82195¢-2) || 6 8.39902(-5) ]
| 3 | 8.99303(-4) ] 20
f Now for w/h = 0.6329, i.c. x = ~0.2772, the effective filling fraction is 0.6188 103 20
1 and, from (3.45), the effective relative permittivity 7 -
: Eef = 1+0.6188x(253-1) = 1.947 E 50
The characteristic impedance of the line 5
: Zy = \/Zei = 109.6Q 4] E
eff 34 90
: The phase velocity /“‘/
! ¢ 8 1 1
Vph = = 2.149x10° ms : < 2]
! P T e m = ] 120
8 ]
The results that have been obtained for w=10mm line are presented in E //
i Table 3.4, together with the values that may be similarly derived for the 2.0 mm s : 150
j’ case. g _///
: < 3 180
;’ } Table 3.4 A summary of results 07 3
j w - ]
i w, mm N q Eeff Zg, Q Zy, Q Vph, ms™! j_,///

220
0.5 -
1.0 0.6329 0.6188 1.947 152.9 109.6 2.149x 108 4]
2.0 1.2658 0.6592 2.009 113.2 79.85 2.115x 108 0.4
| 260
0.3 .

i
!
|
' ; 02 ] 300
' 3.4 THE CHARACTERISTIC IMPEDANCE — SYNTHESIS ]
! As described in the previous sections, it is possible to derive the characteristic ] | . : 11— 1
! impedance and propagation coefficient for a microstrip transmission line, given 0.1 ' 0I6 ' 0r7 I 0!8 09 1.0 £
g values for the substrate permittivity and line dimensions. However, in the design of . 05 ’ ) . N .
’ i transmission line components and matching networks, it is necessary to derive w/h I N 5 ' "1 ' ; 810 20 o Er
;H for a specific value of the characteristic impedance, assuming that the substrate z 25
T permittivity is known. L trate relative permittivity with
Zf : As a guide to a typical range of characteristic impedances that may be obtained, Figure 3.10 The relationship between w/h and the substrate P

‘B Figure 3.10 illustrates the relationship between w/h and &r with \Je; Z plotted as a Ver Zg as the parameter
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Table 3.5 Synthesis formulae

6 3 L.
q = 2 XRjx'yl

Given the desired characteristic impedance, Zy,
the effective filling fraction is given by

with a substrate permittivity, €.,

i=0 =0 (3.47)
where X = {In(\/?r_Zo)—tl.O} and y = 1~ L
€r
J
i 0 1 2 3
0 7.80057(~1) | ~134226(-3) | ~3.01251(~3) | —1.06181
. . -1 -3
1) -135581(-1) | 4.04927(-3) | 3.48945(-3) | —3.9252] §~4;
2| -236989¢2) | 273642(-3) | 3.98886(-3) | 2.89673(-3)
3 1.30331(-2) | ~138608(-3) | ~2.61336(-3) | —3.16976(-3)
631324(-3) | 2.14458(-3) | ~1.17603(-3) | —1.59925(-3)
g ~1.54467(-3) | -4.56127(~4) | 1.17440(-3) | 194180(~3)
~264802(-4) | ~1.69567(-4) | ~2.15831(~4) | ~3.35670(~4)

The R;j coefficients with power of 10 for Equation 3.47.

Given the characteristic impedance of the line
ratio w/h is given by

geometry in free space, Zg,, the

R
b7l (3.48)
with vy = Y Y {In(Zg) - 40}
i=0

i Y,
0 1.4664( 0)
1| ~1.4386( 0)
2 —2.2444(-1)
3 -9.7196(-2)
4 | -68506(-2)
5 ~2.4801(-2)
6 5.1597(~3)

The Y; coefficients with power of 10 for Equation 3.48.

Synthesis formulae, e,
Tegions with w/h bein
valid for a limited ran
required for many tr.

e.g. [3.16,3.17], often approach the problem in the two
g either small or large, and may give formulae that are only
ge of substrate permittivities. Since w/h of the order of unity is

ansmission lines, care must be taken in notin imi
1 lines, ° g the limits that
apply to them. An advantage, if it is required, of splitting the formulation into two

parts is that the asymptotic values for very lar i
e Ty large or very small values of w/h will be
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The approach presented here is valid for a wide range of aspect ratios,

0.04 < w/h <20, and for all isotropic substrate permittivities. The steps to be taken

for synthesis are as follows:

i) The effective filling fraction, q, as a function of the required characteristic
impedance and substrate permittivity is calculated using the equation that has
been derived through numerical curve fitting techniques to fit the results for the
effective filling factor as given by Kobayashi [3.15]. This equation is given in
Table 3.5 as (3.47) together with the appropriate coefficients.

ii) Knowing q and ¢, the effective relative permittivity, €., may be derived from
(3.45).

iit) Use gqfr to find the free space characteristic impedance Zgg for the same, but still
unknown, line dimensions from (3.44).

iv) w/h, as a function of the free space characteristic impedance that has just been
determined, is given by (3.48) in Table 3.5.

The accuracy of fit to the data points, given in Table 3.1, is AZ¢g < 0.07 %.

Example 3.5

Ignoring end-effect corrections, what are the dimensions of a 100 Q characteristic
impedance quarter-wavelength long line at 1.0GHz fabricated as a microstrip
transmission line on a 1.58 mm thick substrate, &, =2.53?

Solution:
From (3.47), with a substrate relative permittivity, €, = 2.53, the effective filling
fraction

6
q = ZBixi

i=0

3 j
where B; = zRij [1 - ei ] gives the values presented in Table 3.6.
T

=0
Table 3.6 The coefficients, B;, for y = 0.6047, i.e. €, = 2.53
i B; i B;
0 7.77909(-1) || 4 6.82637(-3) .
1] ~131943(-1) || 5 [ —-9.61560(~4)
2 | -2.32543(=2) || 6 | —5.20517(-%)
3 1.05381(-2)

These coefficients are valid for any line where 0.04 < w/h <20.0 on an g, =2.53
substrate. For a 100Q characteristic impedance microstrip transmission line
where

x = In(\er Zg) -4 = 1.0693
the summation for the effective filling fraction gives q = 0.6299 and, from (3.45)
Eor = 1.964
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From (3.19), for the same w/h ratio but without the dielectric substrate
Zgs = VeegZy = 14014 Q
Hence (3.48) gives y = —0.2394 and w/h =0.787.

At 1.0GHz, the free space wavelen i
t1. y gth, Ao =300 mm, i
mission line wavelength 0 i and the microstrip trans-

;"0
A= ——= = 2141
Torr mm

Thus the dimensions of a 100Q characteristic im
[ pedance quarter-wavel
line at 1.0GHz are w/h = 0.787, ie. w = 1.24 mm, with a(l]ength of ?fSerr:lgr:xh tone

-_—

3.5 OTHER PUBLISHED MICROSTRIP LINE FORMULAE

Closed form expressions for microstrip li
p line parameters have been developed from the
results of conformal transformation methods of Wheeler [3.4), for a bfl(:mced strip

Analysis — Characteristic impedance
From Owens [3.16, eqn.71, for narrow lines with w/h <2

_ 1199 (& -1)
Zy = o & . 0.2416
V2@ +1) [ 2(er+1) [O' S16+ g (3.49)
with H = In ﬂ+{4—“J‘+2}iJ
w W (3.50)

From Owe 1 ide li i implifyi
o ns [3.16, eqn.2] for wide lines with w/h22, on simplifying the constant

_ 3767 |w g-1] e +1 -
Zo= =12 108825+0.1645 | T L W
N [h 2 + e 1.4516+ln(ﬁ+0.94)

(3.51)

Analysis — Effective relative permittivity
From Owens [3.16, eqn.9], for narrow lines with w/h < 1

-2
o = (’ e (0.4516 + MJ
2H (& +1) & (3.52)
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with H’ as given by (3.50). For wide lines with w/h > 1
g +1 g -1

Cff = —5 — + —5— xF (3.53)
10k 170555
where Owens [3.16, eqn.12] gives F = [1 + w ] (3.54)
dH @d [3.19, eqnd] gives  F = |1+128]7
and Hammerstad [3.19, eqn.4] g W (3.55)

Synthesis — Line geometry

For 8§<g&, <12, the conditien Zy=(44-2€)Q is used by Owens [3.16] to
distinguish between narrow- and wide-line geometries. For narrow lines, Wheeler’s
formula [3.4] is rewritten as

wo_ 8
h exp(A) — 2exp(-A) (3.56)

ZWNZE F D) (g-1) 0.2416
. = 4 ===
with A 95 T 2@ 1 0P8 T, (3.57)
For wide strips
wo_ 2[n g ~ _ 0517
+ = S{B-D-mEB-1+ re, [ln(B 1) +0.293 > ” (3.58)
) 59.96 7
B = 2201
~ with Zoﬁ . (3.59)

For g; < 16, Hammerstad [3.19] uses the same equations as above but with modified
coefficients and a transition between the equations when w/h=2. The modified
equations in place of (3.57) and (3.58) are

-1
A = ZoV2(e  + 1) (&r—1) 0,46+ 022
119.9 20+ 1) r (3.60)
w 2 L ~ g1 B _ D61
and 4= = ZHAB-1)-In(2B-1)+ 2e, In(B-1)+039 & ” (3.61)

Synthesis — Effective relative permittivity
Given ¢; and with w/h known, €. may be derived using the analysis equations,
(3.52) and (3.53).

EXERCISES

3.1  Sketch the electric and magnetic field patterns for
i)  acoaxial line,
ii) abalanced strip transmission line,
iii) a microstrip transmission line.
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A 50Q characteristic impedance air-spaced coaxial cable has a solid cylindrical dielectric
supporting bead (g, = 2.25) that is 5.0 mm long.

i) What is the additional shunt capacitance at low frequencies due to the dielectric material ?
i) Up to what frequency will this calculation be valid?

A balanced strip transmission line has a uniform dielectric material, & =2.25, and a 5.0 mm
separation between the ground planes.

i) Calculate the strip width that is required for a 50Q characteristic impedance line.

i) At a plane where the dielectric material finishes so that a sliding short circuit may be used

on the line, to what width must the strip be changed if the S0Q characteristic impedance is
to be maintained? :

A 1.0 mm thick alumina substrate, e, = 9.6, is used for a microstrip circuit that requires a S0Q
characteristic impedance transmission line with the impedance to be maintained within 2% of
the true value. What is the line width and the tolerance that must be maintained?

A 1.Omm thick fused quartz substrate, € =338, is to be used for the construction of a

microstrip circuit. If the line widths have to be within the limits of 0.2 to 6.0 mm, what is the
range of characteristic impedances available to the circuit designer?

A microstrip circuit has been fabricated on a 1.58 mm thick substrate. The lines, which are
connected to 50 characteristic impedance coaxial connectors, are themselves assumed to have
a 50 characteristic impedance and are 4.7 mm wide. Estimate the relative permittivity for the
substrate.

An open-circuit terminated stub microstrip transmission linc on a 0.5 mm thick alumina
substrate, & = 9.6, is 1.0 mm wide and 6.0 mm long. What are the characteristic impedance of
the line and its electrical length at 2.0GHz? Assume for this calculation that end-effects and
dispersion may be ignored.

Consider the case of a microstrip transmission line in free space. The strip of width, w, and
height, h, above the ground plane together with its image are each subdivided into four equal
arcas. Because of the double symmetry of the problem, the total of eight charged regions may
be represented in terms of the magnitudes of two unknown charges only, say q; and g,.

) From the geometry of the problem, determine the elements of the matrix [p ] where

vV =[plq

ii) Solve the matrix equation for the unknown charges when the strip has unity potential with
respect to the ground plane and calculate the line capacitances for w/h = 0.01, 0.1, 1.0 and
10.0. Results for the first three cases are given in Table A2.1, while for the fourth case of
w/h = 10.0, a comparison with the value from Table 3.1 should be made.

i) In Appendix 2, Point 2 highlighted the need to develop a special formula for the handling
of self-potential. As the basic equation (A2.5) assumes that the source charge is
concentrated at the center of the sub-area and is at a large distance from the field point
where the potential, V, is evaluated, there may be a significant error for the term associated
with two adjacent areas, ds, and ds, as illustrated below. Derive an equation for the
potential at P, due to the distributed charge, q;/ds, per unit width on the adjacent element.

'—— ds —-f- ds
: ;)1 ! ;2_—-!
T T

q 92

i) Recalculate the two-point example illustrated above using the improved formulation for
adjacent elements and with w/h=0.1 and show that the error for the nommalized

capacitance is increased from 3.4% to 3.9%. What is the physical explanation for this
apparent contradiction?

3.1

[32]
{3.3]

34
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Microstrip
transmission lines —
further considerations

4.1 INTRODUCTION

There are many reasons why a practical microstrip line does not behave exactly as
described by the low frequency models for the ideal line in the previous chapter. In
this chapter, the practical line is considered wherever possible in terms of perturbation
effects on the ideal line. A finite thickness strip is taken care of through an effective
increase in the line width of a zero-thickness line. The finite conductivity of metals
and lossy dielectric substrates do not cause any significant changes to the
characteristic impedance or wavelength, but are responsible for introducing an
attenuation to the transmitted signal.

Quasi-static approximations are based on the assumption of TEM fields in
microstrip lines and are assumed in the design of most components and circuits, It is,
however, important to realize that this TEM assumption may be a severe limitation at
higher frequencies unless one knows how to circumvent it. An appreciation of the
dispersion problem appears in §4.4, where limits to the low frequency approximations
are given together with a description of the variation of effective relative permittivity
and characteristic impedance with frequency.

A microstrip line is capable of radiating from any line discontinuity as well as
setting up other modes that are guided by the air-substrate interface without requiring
the presence of a metal strip. A microstrip circuit is normally enclosed in a shielded
environment to minimize these effects and to protect the circuit from external
influences. However, the shield itself wiil influence the line parameters and will also
allow other resonant modes to be excited in the resulting cavities. These effects are
among the further considerations that must be taken care of, before completing the
design of microstrip components and circuits.

4.2 PRACTICAL MICROSTRIP LINES

4.2.1 Finite strip thickness

The conductors of practical microstrip lines have a finite thickness, t, that must be
accounted for in accurate calculations of characteristic impedance and propagation
coefficient. Formulae that were derived in Chapter 3 for zero-thickness lines may be
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EQUIVALENT }-—— w ————1 |-——Aw/2
L T

£ h

Figure 4.1 The equivalence between finite- and zero-thickness microstrip lines

used when an equivalence is established between a practical line with parameters
(w,h,t) and a zero-thickness line (w",h,t=0), where
wo o= w4+ Aw '
These parameters are illustrated in Fihgul}'le 4.1.dFor t}llf: :Sxa{c:it"}‘l/ of microstrip lines,
r the very narrow high impedance lines, . . )
= h?‘:g,sc:c?f(;:fy paramre};ers of anygTEM line, namely Z, .and Y, are der;vz:d 13
§1.2in terms of L, C, R andG and, in particular for.a lqsslcs§ line, in terms o ¢ and
C. Thus it is necessary to know the influence of finite Jine thickness on L and arll1
hence deduce its effect on both the characteristic impedance and, through ., on the
i ient.
pmpa%zzoir;gﬁ:iz of line thickness with €,=1 was studi'ed by Wheeler [4.1]. and
formulae for the line width corrections for narrow and wide strips were obtz?u}e;ij
One of the wide-strip terms was later corrected [,4'2]‘ as a part of the oném
derivation was based on the assumption of an ur}limxteq width strip. Bal'll and ax;i
[4.3] modified the original Wheeler formulae by increasing all.the conect;on tfemrlij °
w/h by 25%, when used in characteristic impedance calculations,-and thus fou
close fit to existing data at that time. From [4.3]

(4.1)

’ 4w w 1
: - \;1/ * l;tztslt bin| 2 } W 2x (4.2)
4 w 25t 2h w1
T T” h > 2n (4.3)

Furthermore, the effective relative permittivity was also reduced for a finite line
thickness to give

, e&r—1 t/h
fof = foff = 46 *Vwin (44)

Equations (4.2) to (4.4) apply for t/h<02, 0.1 <w/h< :20 and £, <16. Whee:er
[4.2] introduced an additional term that extended tl'le width forfnulae fqr greater
thickness lines and combined both narrow- and wide-line formulae 1'nto a umﬁeq onf,
giving w’/h for characteristic impedance calculations. The cormrection term, suitable
for both analysis and synthesis, is

-

2,42
Aw = %[(l+ln4)—%ln [—;—] + ln_li_] ” with & =1 (4.5)
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with either § = w/h + 1.10 or £ = w’/h - 0.26, depending on whether the actual width
or the equivalent zero-thickness width is already known. Equation (4.5) is valid for
thicknesses up to a square cross-section for narrow strips and up to moderate
thicknesses, i.e. t <h, for wide strips. This equation may be used for all inductance
calculations since for any TEM-wave

L =—1— gm:

2

¢ Cler=1) (4.6)
The width adjustment for inductance calculations is independent of the substrate
permittivity and is most easily given through the thickness influence on Ce = in
(4.6). However, the effect of strip thickness on the capacitance will be dependent on
the substrate permittivity. Aw will be smaller when € > 1 than when €, =1, since
the edge of the strip is in a region where the electric field strength for a given voltage
is reduced as the substrate permittivity increases. From [4.2], the modified correction
term to be used for capacitance calculations is Aw/e;, so that for characteristic
impedance calculations
1+ (1/ep)
Tz A A7)

The effective relative permittivity is used primarily in the evaluation of the

wavelength along the line at the operating frequency. Using the definition that

efr = (Ag/A)? and substituting for each wavelength from a relationship of the form
B = 2rn/A = @VLT, gives

s | C(with substrate)
Eeff =

AW =

C(air) (4.8)
since the inductance is unaffected by the presence of the substrate. Thus
, Zair) 2
Foff = [m} (4.9)
Allowing for the finite thickness of the strip, (4.9) becomes
oo o [T =wAw, g =1))?
eff ( Zyw = w+AW, &) } (4.10)

In this chapter, variations of characteristic impedance are required as functions
of several parameters. For clarity, the impedance is specified as a function of the
parameters (w, h, t, £, ) as appropriate.

Example 4.1

Design a 502 characteristic impedance microstrip line on a 1.58 mm thick, g=25
substrate with a conductor thickness of 0.1 mm. Calculate the effective relative
permittivity for the line and compare the results with those obtained using the Bahl
and Garg expressions.

Solution:

From Appendix 3, for a zero-thickness 500 line, €eff = 2.090 and w'/h = 2.837,
giving W' = 4.482 mm. In (4.5), with £=2577

.
!
|
i
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Aw = 0.139 mm

while aw = 1204 A = 0097 mm

2

ivi 1 line width of 4.482 — 0.097 = 4.385 mm.
g““"i:: ?:::::ge in line width represents a correction term fqr the 1.5% e;r;l)r
that would otherwise have occurred in the characteristic impedance. e
effective relative permittivity is found from (4.10) as
) Zy(w' =4385+0.139, g, = 1) |
Fefl = tZO(w"= 4.385+0.097, £, =2.5)

2
{M] = 2065

50.01

For comparison, with w’ = 4,482, h = 1.58,-and t = 0.1 mm, t.he Bahl .and (f;i:}r,i
expressions from (4.3) give an actual line w,xdth' of 4370 mm, 1rrespe(cjuve.t(‘>1 the
substrate permittivity, while from (4.4) g is 2.078 as compared wi
negligible line thickness value of €qg = 2.090 and the 2.065 above.

4.2.2 Losses
Dielectric losses

The dielectric substrate has a complex relative permittivity given Ttl)ly
£ = g;gy(l — jtand) where tand = (G/wC) is the 1(4)55 tangent for the substrat;. ':
loss tangent represents the ratio of conduction to displacement currcnts'fthatl og{l ;d
the dielectric region. For a TEM-wave propagating along a low-loss.um 0"2. y]- 4

transmission line, from (1.22), the attenuation due to the losses in the dielectric
material is

GZO _ O)CZO

2
A dielectric-loss effective filling factor, q , is introduced now to allqw for. the fact
that the lossy dielectric material does not complete.ly 'ﬁll the wl}ole mxf:rostfnp cro:;r
section. It is clear that gy will differ from a similar effectlYe filling actor
capacitance calculations since, on the one h;}nd, fpr evaluating qy there is ns
conductance component associated with the air region above the subsu';te}, :e;¢
though there is energy transfer through this region, ?vhlle' on the other ha.n' , for fg
calculations there is a capacitive component for the air region. In (4.11), Cis the 1o
capacitance per unit length of line and, from (1.29) with

Ve

xtand neper.m! (4.11)

t

cZ, = — (4.12)
it follows that
g = TN ‘seﬁthanS (4.13)
c
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:\s derived by Schneider [4.4), the effective filling factor for the dielectric loss
angent

4 = (elcc;tric energy stored per meter in the substrate) _ Ws

(electric energy stored per meter in the complete line) ~ W (4.14)
Furthermore, in (4.4, Appendix 1], it is shown that

ow _ W g W _w

og, & Oteff  Eeff (4.15)
. o 3
giving e Lot Ws _ o s g

r & W € (4.16)

Thus g = —r Okt

Eeff  Ogr (4.17)

The variation of ee with €, for a given line i i
' geometry is found by using (3.45),
Le. Eofr = 1+ q(e, — 1), from which Y e )

£r dq
Q = —oiq+ (-5
d Eoff [ r ae,J (4.18)

From Figure 3.9, it is observed that for all substrate ittiviti
it permittivities, 0.5 <q < 1.0,
for w/h = 1, for which the slope is about the largest ¢ nd

q = 0.66—0.03[1-LJ, e 90 _ _&%i
&r o & (4.19)
Thus the expression
£r
Q9 = — - %q
Eeff (4.20)

will slightly overestimate the dielectric loss, but not by m i
3 ore th 9
€2 2.5. Hence (4.13) becomes Y o sbout 1% it

nf\Er £ [Eegr-1 J
-— tand

c Eeff | €1 (4.21)
Or on rearranging
e [1 - (Eepp)!
og = }06 [ " et’f_l ]tanﬁ neper.m™!
= (&) (4.22)

where Ay is the free space wavelength.

Example 4.2

Calculate th.e attenuation due to dielectric losses at 1.0GHz for a 500 line on a
(l).gglmm thick, - =2.5, substrate. The dielectric loss tangent for the substrate is

Solution:
From Appendix 3, the effective relative permittivity for the line is 2.09.
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Substituting into (4.22), gives

V209 [ 1-0.478 ] %0001

0.30 1-04

i

0.0132 neper.m™!
0.114 dB.m™!

or o]

Conductor losses

At microwave frequencies, the current flows through a thin layer on the outside
surface of the microstrip conductors. With the transverse dimensions much greater
than the measure of this layer thickness, called the skin depth, the skin effects of an
actual conductor surface may be analyzed in terms of a plane wave propagating along
the normal into the conductor. For a plane wave propagating in a good conductor, the
transmission line model of Chapter 1 can be used with L and G now evaluated for a
unit cross-sectional area, as well as per unit length. From (1.5) with no magnetic
losses and with the conductivity & 3> we, the propagation coefficient

y = VjoL6 = a=[3=[%6]z
g |ous)t
= a=p=1{7 (4.23)

where | is the permeability of the conductor that, for non-magnetic materials, is taken
as Jig, the permeability of free space. Thus the fields and currents decay exponentially
into the conductor and, at one skin depth 8, have decayed to ¢! of their surface
values, i.e. 8 = a~l. Hence the skin depth

2

{wuo] m (4.24)
This definition of skin depth is useful since the total current for a uniform current
density J, within this depth, as illustrated in Figure 4.2, is identical to that of the
actual current with the same current density Jy at the surface and an exponential
variation into the conductor. It may be assumed that if there are at least three skin
depths of conductor thickness from each surface, i.e. to the 5% maximum current
density level, then the assumption of the uniform current distribution will produce
errors that are negligible in comparison with other possible sources of error, such as
the effects of surface roughness.

Example 4.3
Calculate the skin depth for a copper conductor at 1.0GHz and compare it with the
thickness of metal for a substrate with a 1 oz. copper cladding (i.e. t =35 um).

Solution:
From (4.24), with¢ = 5.8%107 S.m ! and p = pig = 4w x 107" Hm™}
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Figure 4.2 Current density variations with d
¢ epth from the surface of i
(a) the exponential decay of the current density, (b) the plane for ?hiogg;(;[:: ’s;}::(f)::v}r:)%

inductance calculations and (¢) th i o
- e equiv i e
calculations ) quivalent current distribution for surface resistivity

1
5 = 2 '
2710° x 41077 x 5.8><107}

ie. 5 = 2.1 pum

dA cc;lpper conducto.r that is 35 um thick represents a thickness of some 17 skin
epths and there will not be any significant interference between the currents on
opposite faces of the conductor.

Example 4.3 shows that the current flows within a very thin layer on the surface of
the conduct.or.' A conductor that is deposited onto a substrate will have a surf:
roughness similar to that of the substrate. The r.m.s, surface roughness may easil al(;:
1 pm or greater and will cause the current to flow along a longer path )allcrossythe
;;mfacs: of the conductor, giviflg increased conductor losses along the microstrip line
'O‘c is lht? conductor loss with perfectly smooth conductors, then the practical Ioss.
O accounting for surface roughness, as given by Hammerstad and Bekkadel [4.5], is

% = 0 [1+2 arctan(1.4.4/5)
' (4.25)
tv;;here ‘A is the r.m.s. surface roughness. This equation fits the trends of the
eoretical excess conductor loss when A <28, as evaluated by Morgan [4.6] for

three surfaces with known surface roughness. '
u 1The surfaf:e 1mpec.jancc Zs of a conductor is required for attenuation
;:0 ct:ltlx ations. Itis df:termmed by the voltage/current ratio at the surface and is equal
© input wave impedance seen by a wave traveling from the surface into an

infinite thickn f A
with & ess of the conductor. Thus, from (1.12), with no magnetic losses and
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1

N 4
= xo = [1OR|T _ o em(®
Zg = Rs+jXs [ p ] A+Di55
- _ 14§
ie. Zs = s (4.26)
This surface impedance may also be written in the form
- L ienld
Zs = 55 ”“’”{2 (427)

from which it is now clear that the surface resistance is given by a uniform current
flow over a depth 8 and the surface reactance is inductive. The surface inductance
Lguctace Will be given by moving the current sheet from the surface, where it would
be in the perfect conductor case, to a depth §/2. The true current density and the
equivalent profiles for R and L calculations are illustrated in Figure 4.2. For a
transmission line that has a surface with length / and width w

Rg!

R =X==" (4.28)

Calculating X and deducing R from R = X of (4.28) is better than calculating R
directly using (4.26). This is because in practice there are problems in the direct
estimation of R, due to the difficulties in finding the spatial dependence of the current
that flows in the conductors. The inductance per unit length of a line at high
frequencies normally assumes that all the current flows on the surface of the
conductor, i.e. inductance external to the conductor Ley; is calculated, which ignores
the magnetic flux that is actually within the conductive medium. However, as seen
earlier, it is more precise to assume that the current sheet, rather than flowing on the
surface, flows at a depth 8/2 as shown in Figure 4.2. This calculation will give a
greater value for the total inductance where the difference is attributed to the surface
inductance, Lgyface. Thus

Lsurface = Ltotal — Lext
It is Lgyrface that is responsible for the reactance X in (4.28), so that A= Wlgyrface
may now be evaluated if the change in line inductance is calculated as perfect
conducting walls recede by 8/2 as shown in Figure 4.3. This procedure, known as the
"incremental-inductance rule” of Wheeler [4.7], gives the line resistance due to the

skin effect, but is based entirely on inductance calculations.
For inductance calculations that lead to the resistance, it is only necessary to

(4.29)

—
I

I \
27204
g =10 W — 1y
ST ST ST sy,

Figure 4.3 Receding surfaces for the calculation of internal inductance
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h L .
ﬂ:e the. c;)lnductmjs in air by taking €. = 1.0 for the substrate region. Using (4.5) for
Char;(i:;vsﬁzr;;] ;velg;:ceof fa lc'onductor may make negligible difference to the
of a line with thin conductors. H i
o ) . However, as discussed b
c;ccilla::i:) nz;l. si[:il'[htahi h;hr:gl;nf:ssthr.m;\st be included in incremental inductancz
ons, sir In thickness of the line when taki h i

surfaces is significant in the difference calculat ot e orotien s
. : signi ulations. The geometry of the problem i
illustrated in Figure 43 From (1.17) and (1.27), the inductanz ma bzro’ on in
terms of the characteristic impedance as Yo svenm
Z(air)

¢ (4.30)

L =

T = =X
hus, A = o Lgyface = o Zo(w—8,h+8,t-8,e,=1) - Zy(w, h,t,srzl)]

" N (431)
€ variation of power transmitted along a lossy line is
P(z) = Ppye 202 (4.32)
On differentiating this ex i i .
o Gt g pression with respect to z, the attenuation coefficient is

a = (Power loss per unit length)
2 x (Power transmitted) (4.33)

In terms of total volt (2 of e travel wav [}
ages and currents
a Smgl trave mng wave and th parameters

o = 'R [= R J
2VI 27, (4.34)

This equation is of course equi
ation quivalent to (1.22). However, at higher fre i
when the quasi-static model of the line is no longer accurate, (4.33) isgstill val(i]:il C;;Ctl;:

baSlS for attenuation calculatl()n N with the transverse urfac currents included in the
S
S€ S C ts incl

Thus o, = —A__
2Zy(gp)
- m 28 he8 =B e=1) - Zyw,h, bep=1)
% Zo(w,h, t,e,) neper.m™!

435
Example 4.4 ( !
Calculate the conductor loss at 4 OGH: i
. z for a microstrip line that h i
parameters: w =0.508 mm, h=1270 mm, t= 0.009€nm, era= 92.16S th:mgo”c?;;)z%

conductors with 6 = 5.8x 107 §.m™!
0 Dors ¥ 0’ S.m™". The r.m.s. surface roughness of the conductors

Solution:

From (4.24), the skin de; i
» i pth at 4.0GHz is 0.00104 mm. T i i
terms to the width for the strip conductor from 4.5) ar::t.: he (hickness corection
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i) For t =0.009 mm and & = 1.50, then
Aw; = 0.01128 mm.

ii) For t =0.009 ~ & = 0.00796 mm and £ = 1.50, then
Awy = 0.00997 mm.
From Table 3.2, the following characteristic impedance calculations are made:
i) Using Ly with w’ = w + Aw, gives
Zo(w =0.51928,h=1270,¢' = 0,¢,=1.0) = 178.604 Q
ii) Using Ligpa With w' =w — 8+ Awyand b’ = h + § gives
Zo(w' =0.51797,h=127104,¢ =0,e,=1.0) = 178.802 Q
jii) Using Lay;, but with the substrate present, from (4.7) gives Aw’ = 0.006, and
Zo(w' =0.514,h=127,¢ =0,,=9.6) = 7263 Q

At 40GHz, Ay = 7.5 cm and, from (4.35)
8.686 « 178.802 — 178.604 dB.cm!

% = 795 72.63
ie. e = 00099 dB.em™
The surface roughness will increase the attenuation along the line. From (4.25)

’ 2 1.4x0.001
= 1+= e
% ac[ x arc‘a"( 0.00104 ]
giving an overall conductor loss of 0.016dB.cm™.

The characteristic impedances that have been evaluated in this example
using formulae in Table 3.2 are not accurate to the quoted number of significant
figures. However, for small variations in the line parameters, any systematic
errors in impedance will cancel when a difference value is found.

4.2.3 Shielding enclosures

In Chapter 3, the characteristic impedance and relative effective permittivity were
derived for microstrip lines on the assumptions that only uniform lines were
considered, that no additional lines were nearby and that both the ground plane and
the region above the substrate were infinite in extent. In later chapters, when
component designs are considered, the infinite nature of the ground plane and air ,
region will be retained. However, in a practical system it will be necessary to have
finite dimensions for the overall circuit. A modular system of enclosed housings,
either at a component or subsystem level, not only provides easier handling and
strength, but also may be required for internal or external electromagnetic shielding
and hermetic sealing to reduce circuit deterioration from external elements.

The presence of sidewalls and a top plate modify the geometry of the ground
plane. These additional conducting planes increase the line capacitance per unit
length for a given w/h ratio and, in particular, increase the percentage of the energy
that is transmitted through the air region. Thus both the characteristic impedance and
effective relative permittivity of any line are decreased. A compromise for the
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SIDEWALL
— d ﬁ-]-—w
_____ ————— o o o _ﬂ _——
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Figure 4.4 The presence of a

housing between minimal circuit interference
means that circuit effects should be small a

perturbations from one of the sid

A single sidewall

Figure 4.4 illustrates the geome:
sidewall. The boundary conditio
image line. The combination of

sidewall, showing the odd-mode equivalent structure

and overall compactness generally

nd may be considered as separate
ewalls and from the top plate.

try of a single microstrip line in the vicinity of a
ns at the sidewall are maintained with the use of an
the line and its image is identical to the odd-mode

configuration that will be described for parallel-coupled lines in Chapter 8.

The equations in Chapter
separated by a distance s =
impedance of a single line in the

8 for the odd-mode impedance, where two lines

2d are driven in anti-phase, are used directly to give the

proximity of a sidewall. The results, giving the line

impedance normalized to Z, the value of Zy as d — o, and as a function of d/h, for

1.0
0.95-
€ =25 =10
Zo 09 - g =1.
Zwo 085
(@)
08 Zp=50Q
0.75 T T T T T T T T L |
03 0405 07 1 4p15 2 3 4
1.0
0.95-
Z, 09
Zo 0854 Zpy =300
Zp=50Q )]
0.8 + Z,=80Q g =25
0.75 T T T T T —T—r
03 0405 07 1 4p15 2 3 4

Figure 4.5 The reduction of charact

s_howing (a) variations for 50 lines
line-impedances on a single substrate

eristic impedance with the proximity to a sidewall
on three different substrates and (b) variations for three
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S 0.95-
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=

.2

8 09 - € =9.8

E Zpo=50Q
0.85 T T T T 1 T T T T T

03 04 05 07 14,15 2 3 4

Figure 4.6 The reduction of €x¢r by a factor, k, with the proximity to a sidewall

three substrate relative permittivities (1.0, 2.5 and 9.8)‘, are plotted for lines that llla\:z
Zy =50 in Figure 4.5a. The plots are fairly inst?n?lt}ve to €; and may b<z,)x(1)scThC
estimate the effects on the impedance over the permittivity range 1.0< €< 10.0. b
procedure for designing a SOQ line that has to pass close' toa sidewall is 111;18&;5 13
Example 4.5. Further plots that show the reduct'lon f’f line impedance for 30, 50 an
80X lines on an &, = 2.5 substrate are illustrated in Figure 4.5b. L but

Not only is the characteristic impedance reduced by the' presence of the wall, (l)lf
so also is the effective relative permittivity, now thzgt the're is a higher per;entag;: of
energy transfer above the substrate. €qg will be‘ required if any waveleng;lh e%en tl.eon
lines appear as parts of the circuit near the 51de?wall. In Flgure.4.6,5 5 ge) :’e ucf:rom
factor, k, for €. is shown as a function of the distance f’f a nominal ;nc o
the sidewall for e, =2.5 and 9.8. More precise calgulatxons may be made ot; o[i !
line combinations by evaluating, from Appendix 4, the odd-mode effectiv
permittivity for a coupled line.

Example 4.5 . ‘ Lof
A 50Q line on a 1.58 mm thick, € = 2.5 substrate is situated adjacent to a sxdew.a uc:
an enclosure with 2.0 mm clear substrate between the line and the wall. What is the
required width for the line?

S th i ith d/h = 1.27, a 50Q impedance line with
imensions that are given, wi =1.27, . : :
fvl}(;lm:geSg; is reduced by a fagctor of 0.95 to 47.5Q. Assuming that this fa;:}t(;{ 12
insensitive to small impedance changes, the geometry of a §0/0.95 =52.6 1r11n
is required. From Appendix 3, for this line w'/ h= 2..625, giving w =.4.15 mr:l. _
this case, a line width reduction of 0.34 mm is r§qu1red for a 502 line du:u 0
proximity of the wall. The edge of the line remains at 2.0 mm from the wall.

The top plate

Consider a microstrip line with a metallic shield placed as a top or cover plate ?t a
distance H above the substrate and strip as illustrated in Figure 4.7. The line
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Figure 4.7 The geometry of a covered microstrip line

capacitance will increase and the characteristic impedance decrease as H is reduced.
Bahl [4.9] provided the first set of closed-form equations that allowed for the effects
of the top plate. These were corrected and extended by March [4.10], on whose
expressions the following equations are based.

With reference to Figure 4.7 and with T=(1+H/ h) and V=w/h, the

characteristic impedance of the unshielded microstrip line with air dielectric Jor the
substrate region is modified to give

Z(air, shielded) = Z(air, unshielded) — AZ, (4.36)

where AZy = 270 [1 ~ tanh [1.192 +0.706vVT - 1—;32” x

x [1 0109 — tanh™! [o.mzv +0.177 V2 - 0,027 V3
T2 (437)

T!xe effective rf:lative permittivity is reduced by the presence of the cover plate. It is
still expressed in terms of an effective filling factor and the substrate permittivity with

e = 1+ q(shielded)x (g, — 1) (4.38)
where q(shielded) = 0.5 + q"x{(q(unshielded) — 0.5)
30 1.0
w/h<1
25 w/h=2 0.8
w/h=5
20 - 0.6
o ,
q
o154 - 0.4
N .
10 --0.2
5] - 0.0
0 r T T T ————
2 s 10

Normalized distance to the top plate, H/h

Figure 4.8 Correction factors for th i i
A e presence of a top plate in the case of a shielded
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;o __l.164 >h
and ¢ = tanh|092240121T- 1) H2 (4.39)

When H = h, giving T =2 and q" = 0.5, the electric flux density is symmetrical about
the plane of the strip and €er = (€p+ 1)/2 for all values of w/h. Finally, the
characteristic impedance of the shielded line is given using (4.36) and (4.38) as
. Z(air, shiclded)
Zo(e;, shielded) = ———“@—‘—' (4.40)

AZ,, from (4.36) for an air line is plotted as a function of H/h with w/h as a parameter
in Figure 4.8. The correction factor q is also shown in the figure.

4.3 SUBSTRATE MATERIALS

1t will have been observed that, up to this stage, the majority of examples have been
concerned with a substrate with ;= 2.5. While this value is typical of a range of
materials and has been used in Appendix 3 for calculations, there are also many other
suitable substrate materials. In Table 4.1, a brief description of the properties of some
of the substrate materials is given, highlighting some of the advantages and
disadvantages of them. A more thorough discussion of this topic may be found in
Hoffmann {4.11].

4.4 DISPERSION

In Chapter 3, a microstrip line was considered with low frequency approximations
that allowed the line to be described in terms of its capacitance per unit length both
with and without the presence of a dielectric substrate material. The majority of
topics in this book will be presented in terms of the low frequency or quasi-static
assumptions to aliow the underlying principles of components and systems to be
studied. However, an attractive feature of the microstrip line is that it may be used at
high frequencies with compact circuit configurations, but where the cross-section
dimensions of the line are no longer very small compared with the operating
wavelength. The quasi-static assumptions that require predominantly transverse
electromagnetic fields are inadequate at high frequencies and a full-wave solution
allowing for the complete matching of the fields at the dielectric-air interface is
needed.

4.4.1 The effective relative permittivity

Among the early work on the dispersive effects in microstrip lines, Chudobiak et al.
{4.12] derived empirical expressions to fit both their experimental €g results and
those of Troughton [4.13] and Arnold [4.14]. Their expressions were straight line
approximations for the frequency dependence of g for frequencies greater than fy,
the frequency above which dispersion no longer may be neglected. This frequency
limit is given [4.12] as

1

Zo 2 . . :
fo = 0.95x {h_é\/—;_———l] GHz, with hin mm and Zj in Q

(4.41)
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Table 4.1 The properties of substrate materials

. tand
Material [ @ 10GHz Advantages Disadvantages
Air 1.0006 =0 Pure TEM wave. No support for strip.
Assumed as free space. Large physical size.
PTFE 2.1 0.0003 High thermal expansion.
Poor mechanical propertics.
Reinforced { 2.3-26 <0.001 Improved mechanical High thermal expansion.
plastics properties. Variability between batches.
Large sizes — low cost.
Quartz 3.78 0.0001 Reproducible substraies.
Useful in the mm range.
Low thermal expansion.
Ceramic
loaded 25-10 <0.002 Good mechanical properties. | Variability between batches,
plastics
Alumina 98 0.0001 Reproducible substrates — Brittle.
99.5% pure improving with purity. Slightly anisotropic.
Sapphire 94 0.0001 Reproducible substrates. Anisotropic crystal.
Al,O4 116 Very smooth surfaces. Small size — high cost.
GaAs 12.9 0.002 Integration with high Thin substrates (~0.15 mm).
frequency active devices.
Rutile 85 0.004 Reduced size components. Rough surfaces.
TiO, Temperature sensitive g; .
T Notes
1. Readily available and popular substrate materials.
2. The cut with the C-axis normal to the ground plane gives electrical properties

that are independent of the direction of propagation across the substrate. For

electric fields along the C-axis, £, = 11.6.
3. tan 8 < 0.001 for the high resistivity material.
4. A negative thermal coefficient of permittivity.

The model upon which (4.41) is based is a linear piecewise fit to the low
frequency variations of €q.¢r. A significant advance was made by Getsinger [4.15]
with an analysis of a waveguide model that possessed similar field characteristics to
the microstrip line along the dielectric-air interface near the strip. Although it is
stated that the analysis only holds for thin substrates, h < Ag/4, and lines with
w < As/3 where Ag is the wavelength of a plane wave in the substrate material, the
analysis does show the distinctive features of the variation of effective permittivity
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with frequency. If eeg(f) is the effective relative permittivity as a function of
frequency, then it should possess the following properties:

i) Eeff(f) has a zero derivative with respect to frequency at f=0 and increases
smoothly with frequency.

ii) At high frequencies, €.g(f) approaches an asymptotic value that is equal to &,
when all the energy is transmitted through the substrate region.

iii) An inflection frequency exists at which the second derivative of € (f) with
frequency is zero.

Atwater [4.16] compares seven published formulae for geg(f) with 120 data values
that have been selected from a wide range of publications and concludes that the
closed-form design equation of Kirschning and Jansen [4.17] shows the lowest
average deviation from the measured results. Further measurements by Deibele and
Beyer [4.18] support the use of this expression for circuits that have a high
(frequency)  (substrate height) product, expressed in GHz.mm, up to the quoted limit
of validity of the expressions, namely 39 GHz.mm. This limit corresponds to a
maximum value for the substrate thickness of 0.13 x(free space wavelength). The
Kirschning and Jansen expression is based on extensive numerical data, that were
derived using the full-wave theoretical analysis of Jansen [4.19]. Other more recent
variations in the approach to the full-wave solution are given by Kobayashi and Ando
{4.20] and Shih et al. [4.21]. In these papers, emphasis is placed on the two-
dimensional representation of the currents in the strip, as the incorrect treatment of
the singularities associated with the currents may otherwise be a major source of
€rTor.

As the emphasis throughout this book is towards the lower frequency analysis
of microstrip circuits, a simpler expression by Pramanick and Bhartia [4.22] is
presented here. This expression, shown by Atwater to be one of the more accurate
formulations, will give satisfactory results unless the high range of (f x h) products
are to be used. As derived from the equations in [4.22]

)
f) = - ———3
Eeff®) = & = 7 /52 (4.42)
Er ¥ Z() :
i = h t
vk [eemm] Zoh T (443)

An accurate, but more complicated, dispersion formula by Kobayashi [4.23] has been
developed from analytical results [4.20] for use at higher frequencies in microwave
computer aided design.

Example 4.6

With quasi-static approximations, a 50Q microstrip line on € = 2.5 substrate has the
parameters w/h = 2.837 and €.(0) =2.09. If the substrate thickness is 1.58 mm, plot
the variation of the effective relative permittivity for frequencies up to 10.0GHz.
Indicate the frequency range over which the quasi-static approximations may be used.
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|
€ 215 t
o h=1.58
| =1.o3mm
2.1 4 i g =25
i Zy=50Q
2.05 T T T —L T
. T T
0 2 4 6 8 10

Frequency, GHz

Figure 4.9 The frequency dependence of the effective relative permittivity from Equation
(4.42). Specific points with bars for their quoted accuracy are derived from the equations of
Kirschning and Jansen {4.17].

Solution:

In this solution, dispersion results for (fxh) up to 15.8GHz.mm are given. From
(4.43)

£ - ( 25 1%, 50

T =

209]  2x4m1077x0.00158
= 13.8GHz.

Now with the frequency in GHz, (4.42) becomes

tef®) = 2.5 —0Al

1+(f/13.8)2

This expression, together with the quasi-static timit of (4.41) and specific values
calculated from the more comprehensive equations of [4.17], are plotted in Figure
4.9.

4.4.2 The characteristic impedance

The concept of characteristic impedance may only be applied in a rigorous manner to
a pure TEM transmission line as the ratio of voltage to current for a propagating wave
along the line. The hybrid nature of the fundamental mode of a microstrip line
requires that careful consideration be given to the meaning of characteristic
impedance before the frequency dependence of the value can be determined.
Associated with the propagating wave, there are three quantities — the average
power flow, Pyy, the magnitude of the total longitudinal current in each conductor, I,
and the potential difference, Vy, between the conductors along the line of maximum
electric field strength between the centers of the conductors. Definitions of the
characteristic impedance may be made in terms of any two of the quantities, noting
that Vy and I, will be the peak quantities. Thus
2P,,

12 (4.44)

ZoPI) =

\
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A
ZyP\V) = 2P,, (4.45)
vX '
and Zo(v,l) = f = Z()(Pyl) x ZO(PvV) (446)

Once the quasi-static approximations are no longer valid, each definition leads to a
different value for the characteristic impedance with Zy(P,I) being the geometric
mean of the other two values. Jansen and Kirschning [4.24] discuss how the
appropriate choice of expression is made in such a way that the theoretical full-wave
solution and the use of characteristic impedance in circuit analysis give the best
agreement for the majority of line configurations. The power in the propagating wave
must be one of the terms in the impedance definition, if the power properties of
associated network matrices in Chapter 2 are to be described correctly. Further, in
[4.24], it is argued that since I, is much less dependent than Vy with the increase in
frequency for a constant power, then I,(f) is more suitable for use in the TEM-
equivalent concept of characteristic impedance.

The use of (4.44) with its insensitive dependence on frequency has been
supported by measurement, particularly when broadband and low reflection
transitions have been considered between 50Q coaxial and microstrip lines (England
[4.25] and Majewski et al. [4.26]). As with the dispersion effects on the effective
relative permittivity, so Jansen and Kirschning [4.24] have published a detailed
expression for this Z(f), based on data generated by the full-wave solution. Within
the context of this chapter, it suffices to present typical variations in Figure 4.10 for
lines on €, = 2.5 and 9.8 substrates. These curves show typical trends for Zy(f) with

1.10

1.08
Zo(f)

Zy(0)
1.06

1.044

=€
!
AV

1.02 0.2

1.00 e —
0 2 4 6 8 10 12 14 16
(fxh), GHz.mm
Figure .10 The frequency dependence of characteristic impedance, normalized to the

quasi-static characteristic impedance and based on the equations of Jansen and Kirschning
[4.24]
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(fxh) up to a maximum of about 15GHz.mm, corresponding to 10GHz for a 1.5 mm
thick substrate.

Example 4.7
Estimate the line width for a 50Q microstrip line on a 1.58 mm thick, £.=25
substrate at 6.3 GHz.

Solution:

For this substrate at 6.3GHz, (fxh) = 10.0GHz.mm. From Figure 4.10, with
w/h = 2.8 for a 5002 line (from Appendix 3)

Zy(f) = 50Q = 1.025Z(0)
from which it is seen .that a 48.8Q quasi-static characteristic impedance will
provide the required 502 impedance at 6.3 GHz. From Appendix 3, for a 48.8Q
line

w/h=2943, ie. w=4.65mm
The effect of dispersion may be judged, if this value is compared with
w = 4.48 mm for a quasi-static 50% line.

4.5 OTHER MODES OF PROPAGATION

A microstrip transmission line is an unbounded structure in the transverse plane and
any discontinuity in the uniform nature of the line may generate other modes of
propagation. A surface wave mode that is guided in the plane of the substrate, with
the substrate on the ground plane providing the guiding structure, is discussed in
§4.5.2 but is a less significant effect than that of radiation into the surroundings of the
line. Nevertheless, it is important that all unwanted modes are reduced to a minimum
to prevent cross-coupling and interference in other parts of a circuit. The choice of
substrate parameters, line dimensions and the dimensions of any shielding structures
all play an important part in this minimization process.

4.5.1 Radiation

Radiation from a microstrip line is a desirable effect in the design of microstrip
antennas in Chapter 10 but what is desired for the design of non-radiating circuits is
narrow high-impedance lines on thin high-permittivity substrates, in shielding
structures that possess a cut-off frequency above the frequency of operation of the
microstrip circuit.

Radiation power calculations generally follow the approach of Lewin [4.27],
who has evaluated the power radiated from a discontinuity, Praq. From the results of
[4.27], for an incident power Pj,

2
Prag Mo h
Pn T Z, {Aoj Fep (4.47)

where 1y = 376.7 Q is the intrinsic impedance of free space and F(g,) is a factor that
is to be determined for each type of discontinuity.
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The small percentage of power radiated from the open-circuit termination of a
microstrip line may be modeled in terms of a shunt conductance, Grad » across the
open circuit. Ideally, Grpq <« 1/Z; and the voltage across it is essentially that across
a perfect open circuit, namely

Voo = 2Viy = 2VPZg (4.48)
where Vi, is the voltage of the wave incident upon the open circuit. Thus
2

Prad 1 27 [h
Grag = —2% = ———x— 0101 Fe)
nTING T g Tz ) (4.49)

2
2
- 80 |k ) Fiep)
Z5 M (4.50)

Van der Pauw [4.28] derived more exact expressions than those of Lewin but,
following the work of Abouzahra and Lewin [4.29), better agreement between the
two approaches was obtained, once the effective permittivity derived by Lewin was
replaced in the various parts of the expressions for F(g,) by €, OT Eq aS appropriate.
Abouzahra (4.30] derived a more general formula for F(er,€e), in terms of the
current reflection coefficient of the termination on the microstrip line, and applied it to
both matched and short-circuit terminations, as well as the open-ended line. It should
be noted that in all these derived expressions, the termination is at a plane coincident
with the edge of the substrate and ground plane.

For an open circuit, with a current reflection coefficient of —1, F(er, eofp) is
plotted, Figure 4.11, as a function of the characteristic impedance of the line for a
substrate relative permittivity of 2.5. Increasing the permittivity of the substrate
reduces the value of F(g, €eg), as is seen from the asymptotic expression for large
€, given by Abouzahra and Lewin [4.29], namely

1.6
Full expression from
(4.29, Equation 6] 7 e
4N e
T A
& X :
& As; i i
X ymptotic expression,
1.24 Equation (4.51)
2322 21 2.0 1.9 Eeff
L L o e e S B
20 40 60 80 100 120 140 160 180 200

Characteristic impedance, Q

Figure 4.11 The radiation factor, F(g;,€epp), for an open-circuit termination on a substrate
with & = 2.5 as a function of the line impedance, i.e. as w/h is varied
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8 1 4 1

N S
3eegr Seefr € (4.51)
The accuracy of (4.51) improves for lower impedance lines with their higher effective
permittivities on any given substrate, as seen in Figure 4.11, where a comparison is
made with the full expression for &, = 2.5. It also improves with the use of higher
relative permittivity substrates.

Fler,eep) —

Example 4.8

Consider the open-circuit termination on a 50 characteristic impedance microstrip
line that is used as a matching element at 2.0GHz. The substrate is 1.58 mm thick
with €, = 2.5 and with no shielding around it. Calculate

i) the percentage power loss due to radiation from the open circuit,
ii) the equivalent radiation conductance, Grad »

iii) the V.S.W.R. on the microstrip line.

Solution:

i) From Figure 4.11, the open-circuit termination radiation factor for a 50Q
characteristic impedance line on €, = 2.5 substrate is

F(ep,€eqp) = 1.28

At 2.0GHz, the free space wavelength is 150 mm. Now using (4.47), the
radiated power for one watt of incident power onto the termination is

2
_ 376.7 | 1.58
Pryg = n———SO [—150 ] x 1.28

= 6.7 mW
Thus there is 0.67% power loss by radiation from the open circuit
termination.
ii) The radiation conductance from (4.49) is

1
Grad = 7335 * 0.0067

33.6uS

iii) The 50€2 line is terminated by a radiation resistance of 29.7k€ instead of a
true open circuit. This load resistance gives a voltage reflection coefficient of

20700 - 50
IT] = 25700+ 30 = 09966

and a V.S.W.R. of about 600.

Note
Practical transmission line losses on their own will probably reduce the V.S.W.R.
from the ideal value of infinity to a value less than the one just calculated.
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4.5.2 Surface waves

A dielectric sheet on a ground plane will act as a guiding structure for surface waves,
see e.g. Collin [4.31). With the ground plane in the y-z plane and with a propagating
lossless wave in the z-direction given by ¢JtB2) 4 solution for the complete set of
TM and TE-modes may be derived. Now for situations where field components in
the direction of propagation have to be included in the solution, it is useful to
distinguish between the different phase coefficients, ky and B. In the direction of
propagation, f8=2mn/A, while for a plane wave in free space, ko= 2n/Aq. In the
substrate, the field components are uniform in the y-direction and vary as $8(px)
along the normal to the ground plane. Above the ground plane, the fields decay
ase™™ . The electric field lines for the lowest-order TM-mode are illustrated in
Figure 4.12. The magnetic field lines are in the transverse x-y plane and are
proportional and orthogonal to the transverse components of electric field. Now p
and u, each controlling the field variations in the transverse plane, are related to B
which must be equal in the two regions, giving

B2 = k¢ +u? and B? = gkE - p? (4.52)
Thus, it follows that
W+ pt o= (g - DK (4.53)

The waves may propagate in any direction parallel to the surface and do not require
the strip for guidance. The lowest order mode, which is the TM-mode, will propagate
down to d.c., but is so weakly guided by the surface that the waveguide wavelength
will be almost as long as the free space wavelength and vastly different from the
microstrip-mode wavelength, Matching the Hy and E, field components across the
air-dielectric boundary gives [4.31]

ph -

g tan(ph) = uh (4.54)
The intersection of plots of (4.53) and (4.54) in the first quadrant of a diagram with
uh and ph as the axes gives the solution for surface wave modes. Solving for (ph) for
the lowest order mode, eliminate u from (4.53) and (4.54) and use

2
w2k Pk K
P ki p k¢ e kd-p €r — Eeff (4.55)
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Figure 4.12 The electic fields of the lowest-order TM-mode surface wave, with no field
variation in the y-direction of the transverse plane
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where e, still defined as (A/A)?, is the effective relative permittivity for the
appropriate surface wave mode. Thus from (4.54)

L
ph = arctan [e, E] = arctan €, e 1
p €r — Eoff (4.56)
Now, substituting for p and rearranging gives
1
h 1 Eef— 117
T = T ————— X arctan g, |————
Ao 2ryer — e [ T [5r_5eﬁ (4.57)

This equation gives the substrate thickness that is required if the lowest order TM-
mode is to propagate with a guided wavelength such that the effective relative
permittivity is €egr. It is the only mode that has no lower cut-off frequency and, at
low frequencies, the majority of the energy is transmitted above the substrate so that
€eff = 1. As the propagation coefficients for this surface wave mode and for the
normal microstrip quasi-TEM mode are quite different, the coupling between the
modes will be negligible at low frequencies. At high frequencies, the two phase
coefficients can become comparable, since gq for the surface wave will increase with
frequency. This situation will most likely occur with very narrow microstrip lines
since, when w/h — 0, the microstrip €. = (g, + 1)/2 and is its minimum value.
Substituting this value into (4.57) gives the lowest frequency, fs, at which substantial
coupling to the surface wave may occur, i.e.
¢ xarctan(e;)

f. = ——————
5 nh2@E - 1) (4.58)

Coupling to the surface mode is avoided by always operating at frequencies below fs.

Example 4.9

i) Below what frequency should a 5.0 mm thick, €, =2.5, substrate be used if
surface wave coupling is to be avoided?

ii) If in fact the smallest line width to be used on the substrate is w/h = 0.1, at what
frequency will synchronous coupling with the lowest-order TM-surface wave

occur?
Solution:
i) To avoid coupling with the surface wave, the maximum frequency to be used
from (4.58) is
f = _ 3x10% arctan(2.5)
5T mx0.005xVZ(25-1)
= 13.1GHz.

it) Using the data from Appendix 3, for € = 2.5 and w/h = 0.1, the effective
relative permittivity is 1.851. Now, from (4.57)
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1

- 3x10 1851 -1 |*

s = 2Ex0005xV23 - 1851 Xa'°‘“"[2'5[2.5—1.851}]
= 146 GHz.

4.5.3 Transverse microstrip resonance

A possible resonant structure results when two open-circuit planes are A/2 apart.
This situation occurs in the transverse plane of a microstrip line as illustrated in
Figure 4.13. For the lowest resonant frequency in the transverse plane, the wave
propagation is TEM in the y-direction, the fields are constant in the z-direction and
(Ey, H,) are the fields that are present. While the magnetic field in this idealized
resonant mode is orthogonal to that in the usual propagating wave along a microstrip
line, the presence of any form of line discontinuity may limit the extent of the
resonant mode in the z-direction and, in closing the magnetic loops in the y-z plane,
be sufficient to give coupling to the (Ex,Hy) fields of the usual propagating mode.
The end-correction length, Al, at the open circuit for a very wide line (here, in the
sense of a very large width along the z-axis), is a function of € and h and is
considered in detail in §5.2. For dielectric substrates with £, > 2, it will be seen in
Figure 5.2 that Al=0.5h. Thus, an estimate of resonance conditions in terms of the
wavelength, A, of a plane wave in the substrate is given by

AL R
w+ 2Al = ) 24E, (4.59)
- ¢ 1 =
or fres = 2 '_er(w+h) with 2Al=h (4.60)

The transverse microstrip resonance is only supported if transverse currents can flow
in the strip. These currents may be suppressed with minimal effect on the
propagating mode by having narrow longitudinal slots in the strip.

Example 4.10

Estimate the free space wavelength and the frequency of the lowest transverse
microstrip resonance for a line with w/h = 3.0 on a 0.5 mm thick, &, = 9.7 substrate.

l* e e iy

— e b
L As J
[ 2 1

Figure 4.13 The line geometry for a transverse microstrip resonance

3
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Solution:

From (4.59), the free space wavelength at resonance for the lowest order
transverse mode is given by

Ao = 24g(w+h)
Substituting €, =9.7, h = 0.5mm and w = 1.5 mm, gives Ag=125mm and a
resonant frequency of 24.0GHz.

4.5.4 Waveguide cavity resonance

The shielding of a microstrip circuit in an enclosed metallic box creates a waveguide
cavity that is partially loaded with the dielectric material of the substrate as shown in
cross-section in Figure 4.14.

Consider the cross-section of the waveguide without the substrate present. The
lowest frequency for propagation is in the TE-mode that has a maximum electric field
across the center of the waveguide between the centers of the broad faces. This is the
dominant mode. From the theory of rectangular waveguides [4.32], the free space
wavelength at the lowest frequency that may propagate, called the cut-off wavelength
A, is given for A > B by

Ae = 2A (4.61)

The only field component not required in the complete field solution for the
dominant mode when the substrate is present is Hy . Thus the magnetic fields lie in
the y-z plane and the mode is described as being a Longitudinal Section Magnetic
(LSM) mode. An approximate expression for the LSM-mode cut-off wavelength

A = 2A 1 ~ni
< [”‘/?f I)B} (4.62)

gives a small overestimate of A for intermediate substrate heights. If the length (i.e.
along the z-axis) of the shielding box is D, with D > B, the free space wavelength for
the lowest order resonance when no dielectric is present is

2 2 2
SRR
Ares A D (4.63)
Note that with Areg < Ag, the resonant frequency of the shielding box is greater than
the cut-off frequency of the transverse cross-section waveguide. The parasitic

X

! g =1 B
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Figured.14 A typical cross-section of a shielded microstrip line circuit
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waveguide resonator modes may be excited by the radiation from microstrip
component discontinuities and coupled between any two such radiation points within
the cavity. Since the microstrip conductors will perturb the cavity fields, it is not
practical to calculate accurate resonant frequencies. Effective suppression of the
resonant modes is required if a resonant frequency occurs near or below the
frequencies used in the circuit. Suppression may involve moving the resonances to
higher frequencies by using metallic posts in the x-direction and placed near the
center line given by y= A/2. The posts must be kept clear of the microstrip lines.
Further suppression of the modes may be achieved with lossy dielectric materials that
are placed alongside the top or side plates, but outside the range of the wanted
microstrip line fields.

EXERCISES

4.1 A 100Q microstrip line on a 1.58 mm thick, €, =2.5, substrate is constructed with 2 line width
of 1.26 mm, assuming negligible thickness conductors. If the actual conductor thickness is
0.2 mm, what is the true characteristic impedance for the line?

4.2 What is the maximum normalized line thickness, t/h, that may be used if the impedance of a
509 line calculated for t = 0 on an ;= 2.5 substrate is not to be in error by more than 2%?

4.3 i) Calculate the attenuation per wavelength from dielectric losses for a 1002 linc at 1.0GHz,

if the substrate parameters are £, =2.5 and tand = 0.002.

ii) Repeat part (i), but with e, =9.8.

4.4 Calculate the skin depths at both 1.0GHz and 10.0GHz for the following materials:

Material Conductivity
Silver 6.2x10" S.m™!
Copper 5.8x107 S.m™!
Gold 4.1x10"Sm™!
Aluminium | 3.8x 10" S.m™

4.5 i) Plot the factor for increased attenuation due to the surface roughness of a conductor, as a
function of r.m.s. surface roughness normalized to the skin depth, i.e. /3.
ii) If the increased attenuation due to the surface roughness of the conductors is not to be
greater than 20%, what is the maximum r.m.s. surface roughness allowable for cach of the
materials given in Exercisc 4.47

4.6 Calculate the conductor loss at 2.0GHz for a 502 microstrip line that has the following
parameters: w =4.385mm, h =158 mm, ¢, =2.5 and t = 0.1 mm. The copper conductors have
conductivity, o = 5.8 x 107 S.m™!, and may be assumed to be perfectly smooth.

4.7 The characteristic impedance of an ideal 60Q microstrip line on a 1.5 mm thick, =25,
substrate is influenced by its proximity to a side wall of a shielding box. Estimate the minimum
distance between the strip and wall, if the characteristic impedance is not 1o be reduced by more
than 2%.

4.8 A 50Q microstrip line on 1.0 mm thick alumina substrate (¢; =9.8) has a width of 0.97 mm
and eqfr=6.56 at low frequencies. Plot g.g(f) for frequencies up to 20GHz and indicate over
what frequency range quasi-static approximations may be used, if wavelength calculations arc 10
be accurate to 5%.

4.9 The radiation factor for a right-angled comer in a microstrip line [4.27] is F = 4/(3¢[). Estimate
the percentage power radiated at 10.0GHz from a comer in a 50Q line on a 1.0 mm thick
alumina substrate, €,=9.8.
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4.10 A microstrip circuit is constructed on a 40 x80 mm piece of 1.58 mm thick, &, = 2.5, substrate.
The circuit is completely shielded by a metallic box with the top plate at a height of 13 mm
above the substrate. Calculate the expected frequency for the lowest-order waveguide

resonance.
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5 Discontinuities

5.1 INTRODUCTION

The accurate representation of the fields and currents of straight and uniform
microstrip lines with constant characteristic impedance are well known and have been
discussed in Chapter 3. As soon as such a line is used in a practical circuit, there will
no longer be a continuous cross-section geometry, but there will be changes brought
about by the joining together of lines, the changing of characteristic impedance or
propagation direction and the connection to various loads. Three classes of
discontinuity effects that may be considered are:

i) the presence of fringing quasi-static electric fields and the associated capacitance,
for example when there are sudden changes in the width of the line and in
particular at open-circuit terminations;

ii) the changes to the normal flow of conduction current and the associated series
inductance;

i) the launching of higher order modes and surface waves as well as unbounded
radiation. These effects have been described in Chapter 4 and may be modeled
by a shunt conductance to represent the loss of power from the line whenever
their influence on the choice of substrate permittivity and thickness for microstrip
systems is important.

When the discontinuity is produced by a change in the line transverse
dimension, an effective way to represent the first two cases is to convert the
discontinuity effects into an equivalent dimensional change in the line geometry of an
idealized line, i.e. a line in which there are no fringing effects.

5.2 THE OPEN-CIRCUIT END CORRECTION

Open-circuit terminated microstrip transmission lines are commonly used in matching
networks and filter structures because reasonable open circuits are easier to realize
than short circuits. In practice, an approximate open circuit is constructed by using
the open end of a transmission line. The ideal field patterns associated with a
standing wave from the open-circuit terminated line are distorted by the abrupt
termination with fringing electric fields from around the end of the line to the ground
plane. At low frequencies the fringing fields, Figure 5.1a, and the increase in
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Figure 5.1 ‘I'he electric fields at the open-end termination of a microstrip line, showing (a)
the fringing electric fields, (b) the equivalent fringing capacitance, and (c) the equivalent line
extension to an ideal open circuit

electrostatic energy as a result of the extra stored charge may be modeled by a
capacitive termination, Cg, across a true open circuit at the terminating plane of the
open-ended line as illustrated in Figure 5.1b. The fringing capacitance at the
termination of the line is equivalent to extending the line by Al in Figure 5.1c, i.e. the
apparent line length is greater than the physical line length.
Using (1.54), the input impedance of an open-circuit terminated lossless line is
Zin = —jZycot(Pl) (5.1)

In (5.1), the correction length, / = Al, that gives the appropriate impedance for the
fringing capacitance

S
Zin = joc; (52)
is therefore given by
Al = % arctan((oZon) (5.3)

In practical situations, such as a single-stub matching network where the theoretical
length of an open-circuit terminated line is known, it must be remembered that the
calculated line length is shortened by the correction factor for the constructed circuit.
As a correction term at low frequencies with Al « A/16, and using B = [ egr(w/c),
(5.3) may be written as :
Al % (w][Ce
w

h Veesr | h

This capacitive model is the first approximation to the correction term and
neglects both the inductance to account for the redistribution of the current flow in the
line and the conductance to model the loss of power by radiation. Equation (5.4) is
consistent with the intuitive notion that Cp = CAl, which is really an expression of the
short line approximation of Figure 2.16b, valid at a current zero position. Silvester
and Benedek [5.1] evaluate the excess capacitance associated with the fringing fields

(54)
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directly, avoiding the possibility of large errors that may occur when the difference is
taken between the charge associated with the open-ended line and the same length of
uniform line. They give empirical equations for six selected substrate permittivities,
expressing the fringing capacitance normalized with respect to the width of the line,
(Cg/w), as a function of (w/h) for 0.1 €(w/h)<10. Their error analysis suggests
that the capacitance values will probably be on the low side of the true values. The
six empirical equations for capacitance in Table 1 of [5.1] have been reduced by
Hammerstad [5.2] to one equation such that the normalized line extension, Al/h, is
given in terms of £ and w/h as

Al 0.412 x €€ﬁ+0'3 x w/h +0.262

h €~ 0258  w/h+0.813 (5.5)

The maximum error for A/ in (5.5) compared with the data that was used for fitting
the expression is less than 0.05h for € =1 and less than 0.01h fore, >2.5.

In a hybrid-mode analysis of the end effects, Jansen [5.3] formulated the
problem in terms of the field and surface current distributions that occur in the plane
of the microstrip. The complete termination is considered to be enclosed within a
perfect metal wall structure, with the walls being sufficiently far from the microstrip
line for them to have minimal influence on the solution. The method may also be
used to predict the frequency dependence of the end-effect correction term.

An empirical formula that accurately models results derived from the method of
Jansen [5.3] for the effect of an open end on a microstrip line has been given by
Kirschning et al. [5.4]. From [5.4)

Alfh = (§,8,65/C0) (5.6)

with
ER 026 (w/n0854 4 0236
eXf' 01890 (w/n)035% 4 087

1 + 0:5274 x arctan(0.084 (w/h)!-9413/)

€, = 0434907

G =
£09236
. R)0-371
thy = 14-WH"=0
Wi x 2358+ 1
& = 1-0.218exp(-7.5w/h)

G4

The accuracy of the fit of (5.6) to the theoretical results at 1.0GHz is better than
2.5% for relative permittivities less than 50 and line geometries in the range
0.01 <w/h<100. While this error, when compared with the overall circuit
dimensions, appears to be small for a total line length ! h, its effect may still have
to be carefully considered in those cases where either the susceptance of a parallel-
connected line that is approximately A/4 long or the length of a A/2 resonator is being
computed.

Over the ranges 0.04 < w/h < 10 and 2.2 < €r 2.6 that cover the majority of

1+0.0377 (6 - 5 exp(0.036 (1~ ,))) x arctan(0.067 (w/h)!436)
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situations for microstrip lines using polystyrene-based subslrate' .maten'als, a
simplified expression to replace (5.6) that introduces less than 1% additional error at
low frequencies has beer} derived for this book and is given by

Al i

- = Aix' + (2.4 -€,)(0.022 + 0.008 w/h)

h .26 o X (5.7)
where x = In(w/h), and A; is listed in Table 5.1.
Likewise, for 9.6 <g; <10.0

5

Al 2 i

— = B;x!

S (5.8)

with B also given in Table 5.1.

Table 5.1 End-effect correction coefficients

. Aj Bj

' 2% <36 [ 96<E <100
Equation 5.7 Equation 5.8

0 0.3817 0.3173

1 0.1038 0.07592

2 0.00879 -0.00201

3 -0.00073 -0.00288

4 -0.00068 -0.00030

5 —-0.00019 -0.00004

The Al/h of equation (5.6) is plotted in Figure 5.2 (the solid line) as a function

08
(5.6),[5.4]
Teaessn
0.6 X X X X [51]
Ao .

h P
O — . @
0.2 =
0'0 T T T T T T T T

005 01 02 0.5 1 2 5 10
w/h

Figure 5.2 A comparison of theoretical results and empirical formul_ae for the low
frequency open-circuit end correction factor with €, = 2.5. The asymptotic limit (a) from
Wheeler [5.6] is for €, >>1. Experimental points [ u] are from [5.5] for € =2.53.
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of w/h with &, =2.5. Data points (+ *) from (5.7) illustrate the fit of the simplified,
but restricted permittivity range, equation to the more complete equation. The
Silvester and Benedek results (x x) and the derived equation by Hammerstad (the
dashed line) tend to support the former authors’ analysis that their results are
expected to be low. The theoretical results of James and Tse [5.5] were extracted
from a small published graph and plotted as the dotted curve. The experimental
results, also from [5.5] (wm) but without any stated errors, were obtained for
€ =2.53. Figure 5.2 thus compares Silvester and Benedek’s results with those based
on Jansen's approach for the case of € =2.5. The agreement between the two
methods improves for large &, , but substantially deteriorates as €, tends to unity.

Since the fringing fields at the end of a line are similar to the fringing fields at
the edge of a line, asymptotic values for Al /h may be deduced for lines with large
w/h from the expressions derived by Wheeler [5.6, 5.7]. These expressions allow for
the fringing fields of a uniform line and give the increase of the effective line width
over the actual line width. In one case, with €, > 1, from [5.6, eqn. 21], it is found
that

Al in4

h - g - 044l (5.9)

giving an equivalent line extension of 0.441 xh for open circuits on wide lines for
high permittivity substrates. This asymptote is shown as (a) in Figure 5.2. Secondly,
with € = 1.0, from [5.7, eqn. 35]

A _ 1, [(mw
h 1:[1’1 h ”J (5.10)

This equation gives Al/h = 1.097 for w/h = 10 and shows a linear increase of Al/h
with In(w/h).

nw

Example 5.1

Calculate the open-circuit fringing capacitance for a microstrip line with
w=h=20mmande, =25.

Solution:
Equation (5.4) may be rewritten to give the open-circuit fringing capacitance

G = AlC = Alﬁ
c Zo
where C is the capacitance per unit length of a uniform line with dimensions w
and h. From Appendix 3, with w/h=1.0 and € =25, it is found that
Zo=902Q and eqgr=1.966, giving C=51.9 pF.m™\. With Al/h=0379 from
(5.7), then Cz=19.7xh pF. Thus, with a substrate thickness of 0.002 m, the
open-circuit fringing capacitance is 0.039pF.

Example 5.2
A A2 1.0GHz resonator that has open-circuit terminations is constructed from a
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100Q microstrip line on a 5.0 mm thick, € =2.53, substrate. What physical
correction factor is required to compensate for the fringing electric fields at each end
of the resonator?

Solution:
For a 100Q line on €; = 2.53 substrate
w/h = 0.787 and e, = 1.964

giving x = In(w/h) = -0.240. Hence, substituting values in (5.7) gives

(See Example 3.5)

5
AL FAx - 0004
h i=0
= 0353

leading to A/=1.76 mm as the length by which the resonator line ml‘ISl.bC
shortened at each open-circuit termination in order to compensate for the fringing

electric fields.
At 1.0GHz, the free space wavelength is 300mm. Thus the half-

wavelength resonator length, /, is given by
300

= 30 5y,
b= 3ioer ~ 2X176
ie. I = 103.5 mm

5.3 CORNERS

Corners are required, not only for the convenience of improving the usage of a g?ve.n
substrate area, but also for such components as directional couplers where it is
necessary to bring two lines into close proximity for a known electrical length. If
space is not a limiting factor in the design, Howe [5.8] shows that for a'bale}nced
stripline a rounded corner with a radius of curvature greater than 3w will give a
corner that is hard to distinguish from a normal straight section of line. Nevertheless,
it is the abrupt corner that will be used in the majority of situations, as it can be
designed to create a minimal disturbance on the line.

Consider a microstrip corner with uniform lines leading up to the two reference
planes as illustrated in Figure 5.3a. The comner, between planes R, and R,, may be
modeled by the T-network in Figure 5.3b. Here, L accounts for the current and
stored magnetic energy and C, for the charge and stored electric energy. The corner
also affects the current and voltage distributions in the uniform connecting lines.
These disturbances, however, can be considered as a part of the corner segment and
thus lumped into the equivalent circuit in Figure 5.3b. In evaluating .t}?ese
disturbances to the uniform connecting lines in the theoretical analysis, auxiliary
planes are introduced some distance away from the corner reference planes. At these
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Figure 5.3 The geometry of a microstrip corner and its equivalent circuits

planes

;
Na|
o

planes, it is assumed that the fields and currents are identical to those of the uniform
transmission line and are not affected by the presence of the corner. L; and C, in
Figure 5.3b have been evaluated in [5.9, 5.10] and [5.11] respectively.

A T-network is also an equivalent circuit for a short length of line that has a
characteristic impedance of L. /C.. However, because of the excess capacitance at
a square corner, this characteristic impedance value will be lower than that of the
uniform connecting lines. In Figure 5.3c, the inductance is accounted for by the line
length, Al;, that has a characteristic impedance equal to that of the connecting lines.
From Figure 2.15 and (2.42)

Al = L/L (5.11)

The excess capacitance over that required for the Al line is shown as the shunt
susceptance, B. This latter model is to be preferred here as it is more useful in
practical situations where the corner geometry is modified to reduce the excess
capacitance and the equivalent line length Al is given.

Inductance and capacitance values have been experimentally verified by Easter
[5.12], using half- and full-wavelength L-shaped resonators with open-circuit
terminations, and by Douville and James [5.13] using a square loop resonator that,
when excited from a movable probe, could be arranged to have either an electric field
maximum or a current maximum at each corner. L-shaped resonators are used in one
of the experiments in Chapter 13. An electric field maximum and no current flow at a
comer makes the capacitive effect dominant, while for a current maximum it is the
inductance that is the dominant element. In both cases, a change in the resonator
frequency is interpreted as due to appropriate line extensions, Ax(C) in the capacitive
dominant case and Ax() in the other. Since the corner dimensions are very much less
than the wavelength, the short line equivalent circuit is valid and the corner
capacitance and inductance are obtained from (2.42) and (2.43) to give

Veerr

= C =
Cc AX(C) Zo AX(C) (5.12)
VEeffZp
and Le = Laxwy = ==& (5.13)

Experimental details for the measurement of Axc) and Ax(L) are given in §13.4.
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The reader will recall from (1.17) that the characteristic impedance of a line is
given by

L 2
2 = |¢ (5.14)
At a microstrip corner, the region between the two reference planes has inductance
and capacitance values, L. and C, respectively. Thus, with the comer dimensions
small compared with the microstrip line wavelength, the characteristic impedance of

the comner section of line is
1

— LC :
Zeormer = Ec_ (5.15)
with an equivalent line length, not necessarily of a 50€2 line, of

c
Al = @\}LC.CC (5.16)

It turns out that Z.mer for the geometry of Figure 5.3a is significantly less than
Zy. Thus the corner may be considered to have either insufficient inductance or
excessive capacitance. It is therefore necessary to either increase the comer
inductance with a narrow slit in the line [5.14] or reduce the corner capacitance in a
symmetrical manner, as illustrated in Figure 5.4, in order to obtain a low reflection
from the corner. Reducing the comner capacitance has been the preferred technique
[5.13], as it is both dimensionally less sensitive in practice, i.e. easier to construct,
and more suitable for theoretical evaluation.

A comparison of theoretical results for a corner between equal width lines is
given in Figure 5.5, with Neale and Gopinath results [5.15, from Figure 6] shown as a
solid curve, those of Thomson and Gopinath [5.16, Figure 3] shown as a dashed
curve, and the measurements of Easter [5.12] for the comer inductance as individual
points. The results are plotted with the inductance, L, normalized to h and the
inductance per unit length of the uniform transmission line, L. This latter inductance,
independent of the substrate material, is given by

L = Zg/e (5.17)

where Zgg is the characteristic impedance of the line in free space. Negative
incremental inductance values for small w/h ratios occur as a result of the
redistribution of current flow in the lines leading up to the corner, giving a reduced
inductance contribution to the overall effective inductance of the corner.

1L,

(a) increased inductance  (b) decreased capacitance
Figure 5.4 Compensation techniques for a microstrip corner
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2.5
(a) theoretical, [5.15])
L. 204 (a) ~ — — theoretical, [5.16]
C (@) w experimental, [5.12]
Lxh s f{)...... experimental, [5.13)
1.0 4
0.5 -
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Figure5.5 A comparison of theoretical and experimental results for the normalized
mg{uctance of a right-angle corner, showing results for (a) the basic comer and (b) the
mitered corner

The results from Douville and James [5.13] for the inductance of a mitered
comer are also included in Figure 5.5. It is seen that the miter increases the corner
inductance. Since the mitered corner is matched for the characteristic impedance of
the line, the equivalent line length of the comer may be derived as the normalized
inductance value times the substrate height.

The comner capacitance for a 90° bend in a 500 line, deduced from the
theoretical results of Silvester and Benedek (5.11], is presented in Figure 5.6. Care
should be taken in using the closed form expressions for the capacitance given by
Garg and Bahl [5.17] and quoted by others, as the expression for w/h £ 1 does not
take into account the major correction that was published by Silvester and Benedek to
amend their earlier paper.

A detailed experimental analysis on the effects of reducing the corner
capacitance by mitering the corner as in Figure 5.4b has been presented by Douville

T T

27476 % 1o 2 14 16
Figure 5.6 The capacitance of a right-angle corner in 509 line, deduced from results given
by Silvester and Benedek [5.11]
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10— T
Figure 5.7 Data for cutting the mitered corner for a right-angle bend

and James [5.13]. The percentage miter of the comner is defined by
X
m = EX]OO% (5.18)

The m required for a good match depends on w/h, but has been found to be fairly
insensitive to the substrate permittivity. Their single smooth empirical curve to fit the
data is given as

m = 52+ 65exp(-1.35w/h) % (5.19)
where w/h20.25 and g £25. This implies that the miter is cut with a distance
along each direction from the outer corner of y (see Figure 5.4b) given by

y = 5—"(‘)w = (1.04 + 1.3exp(-135w/h)) w (5.20)

This distance is plotted as a function of w/h in Figure 5.7.

5.4 THE SYMMETRICAL STEP

The step discontinuity at the junction of two transmission lines with different
characteristic impedances on a uniform substrate occurs frequently, for example in
matching networks and in the design of filters. Consider the symmetrical step that is
illustrated in Figure 5.8a, where a high impedance line with characteristic impedance,
Zy,, joins one of lower impedance, Zgy. As shown, the step is symmetrical with
respect to the center line of the strip conductor.

In the vicinity of the step there will be a transition region, assumed small
compared with the wavelength, where the current flow from one line to the other is no
longer that of either of the infinite uniform lines. This effect will be modeled by a
series inductance for the step, Lg. The electric field will be distorted as the corners of
the step are approached and, in particular, there will be fringing electric fields from
the transition edge. The excess charge stored in this region will be modeled by the
step capacitance, Cs. Thus, an equivalent circuit for the step is formed, Figure 5.8b,
with the inductance component split into two equal parts.

Thomson and Gopinath [5.16] describe a method of calculating the microstrip
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Transition Region

wlI w2 Rll (b) Rll
AT ~
Ry Zg Zgy

@) I .
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Figure 5.8 The symmetrical microstrip step di inui i ingi i
Strip step discontinuity with (a) the fringing electric

fields and current flow, (b) the quasi-static lumped equivalent circuit as scengfrogm planes

outside the transition region, and (c) the line shortened to retain the correct impedance at R,

i experimental
020 } w,/h=10

Wx/h
0154 e—-so05
Lg 8----81.0

»——x1.5
Lobh | o620
+—+25
0.104 e----e3.0
8—a35
X----x4.0

0.05 +

2 wy/h 3

llgule 5.9 The theoretical values for the discontinuit inductance for a Syl1llllCUlcal step
y
change of line width with €xper imental results for Wy, h= 10, from Gopmath et al. |518
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wy/h

Figure 5.10 The discontinuity capacitance for a symmetrical step change of width, from
Gupta and Gopinath [5.21] (® 1977, IEEE)

discontinuity inductance. The method was used to give detailed theoretical
inductance values for a symmetrical step discontinuity by Gopinath et al. [5.18] and
gave the total junction inductance normalized to both L, the inductance per unit
length of the uniform microstrip line of width w,, (w; < w,), and substrate height as
plotted in Figure 5.9. Also shown for comparison in Figure 5.9 are experimental
results [5.18] that were obtained for wy /h = 1.0.

The excess capacitance associated with a microstrip symmetrical step change
has been evaluated by Farrar and Adams {5.19} and Benedek and Silvester [5.20],
with more detailed results given by Gupta and Gopinath [5.21]. The data from [5.21]
is presented in Figure 5.10 for three substrate relative permittivities: 2.3, 4.0 and 9.6.
The discontinuity capacitance is normalized with respect to both the substrate height
and the capacitance per unit length for the uniform line of width w,, C,,, where
Wy > Wy

Example 5.3

Derive an equivalent circuit that includes the discontinuity effects at the symmetrical
junction between two microstrip lines, w;/h=10 and wy;/h=40, where
h =1.58 mm and &, =2.3 for the substrate.

Solution:
With €, = 2.3 and the line dimensions as given, the analysis formulae of Table
3.2 give characteristic impedances of 93.2Q and 40.9Q and effective relative
permittivities of 1.838 and 1.989 for the narrow and wide lines respectively. Let
the equivalent circuit take the form shown in Figure 5.8b, with Lg and Cg
representing the total discontinuity inductance and capacitance.
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From Figure 5.9, using the curve for wi/h=1.0 at wy/h=4.0, the step
inductance is given by
Ls = 0.2xL,, xh

The inductance per meter of the uniform narrow line

_ ZoVeem

Ly, c
93.2 V13838
3x108 .
ie. Ly, = 421x107" Hm! ‘

Substituting values in the equation for Ls, gives Lg/2 = 67pH.

From Figure 5.10, it is seen that
Cs = 022xC,,xh

where, for the broad line

v Eeff2
Cy, = = L 710 Fm!
wo Zgoc 1.15x107"Y F.m
Thus, on substituting the relevant values

Cs = 40 fF

The resultant equivalent circuit that includes the discontinuity effects is
shown in Figure 5.11.

67pH  67pH

Zy = 9320 I4OfF Zgp = 409Q

T

Figure 5.11 The equivalent circuit of the step discontinuity for Example 5.3

Compensation for the fringing capacitance may be achieved in several ways if its
effect on the overall transmission line network is considered. However, the approach
that will be taken here is one where the compensation takes place in the proximity of
the junction. It is designed to give the same impedance at the reference plane Ry in a
practical network as is required for the theoretical design using idealized lines. The
excess capacitance, as the dominant component in the equivalent circuit, has the effect
of making the lower impedance (i.e. wider) line appear to be electrically longer by the
length Al, Figure 5.8c. This means that if the junction position, on the basis of ideal
lines free from fringing effects, was calculated to be at the plane R,, then in a
practical circuit the junction would be moved by an amount Al to R;. The wider line
would thus be shortened by A/ and the correct calculated impedance at R, would be
retained.
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On the assumption that the fringing capacitance is proportional to the step size,
Hammerstad and Bekkadal [5.22] proposed that Al just discussed is given by

\d |
Al = i1 - —[Aly, wy > W
w2

(5.21)

Here Aly is the correction factor for an open-circuit termination on a strip of width,
w. With information from Figures 5.10 and 5.2, it can be deduced that (5.21)
overestimates the capacitive effect and length correction, even at an open-circuit
plane, and represents a simplification of the situation that is now to be addressed.

It was seen in §5.3 for corners that either the discontinuity capacitance or
inductance was dominant, if the discontinuity was at a plane of voltage maximum or
minimum respectively. The same is true for the step discontinuity. However, the
corner had equal width lines on each side of it and, by mitering the corner, it was
possible to make it look like a constant length of line, irrespective of any standing
wave that may be present. The same is not true for a step discontinuity which, by its
very nature, includes a change in line impedance. Now, it is necessary to know the
impedance at the step before accurate compensation can take place.

At a voltage maximum, the equivalent length to compensate for the capacitance,
from (2.43) is

Al = Cg/C = —= xC
¢ Veer: (5.22)
This correction term will now give the same impedance at Rj as is required at the
transition between two ideal lines. As long as the approximations remain valid, Al is
independent of frequency.

THE WIDE LINE IS SHORTENED BY THE LENGTH Al

At a voltage minimum, the equivalent length to compensate for the inductance,
from (2.42) is

Al = Lg/L = —S— xL
LS ZoiVeem (523)

This is the length of the narrow line that compensates for the discontinuity
inductance. Hence

THE NARROW LINE MUST BE SHORTENED BY Al

Equations (5.22) and (5.23) are approximations that are also valid for some of
the cases where there is a high V.S.W.R. on the line. Consider two cases, (i) where
there is a very high impedance, approximately an open circuit, at the discontinuity
and (ii) a typical practical situation where there is still an impedance that is greater
than the characteristic impedance of the line, but nowhere near an open-circuit value.
The following analysis will show how the correction for case (i) is to be modified to
take care of case (ii). Both cases will be expressed in graphical terms on the Smith
Chart, shown as a part of an admittance chart, Figure 5.12, with the admittance values
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A SECTION OF A SMITH CHART, y=g+jb

o

B O b

0.0 0.2 g 0.5 1O

Figure 5.12 Illustrating the increase in line length that compensates for the step-
discontinuity capacitance by returning the admittance to its original value

normalized to Yy,. For readers not yet familiar with the Smith Chart, its derivation
and use are described in Chapter 6.

First consider the plane where yL=0 (an open circuit, A). A normalized
capacitive susceptance +j0.1 in parallel with this load admittance gives B. Without
having moved any physical distance, this is identical to a line extension towards the
generator of A, i.e. 0.0158). Cutting back the original line by this amount gives a
combined admittance that is equivalent to an open circuit.

Reducing the length of the wider line at a step transition now follows on from
the previous discussion, if a junction between the original line and an extremely high
impedance line is considered. Now consider a load admittance that is real and less
than unity, say y, =0.5 at point C on Figure 5.12, with the junction susceptance still
+j0.1. The parallel combination of 0.5 + jO.1 is plotted, D. In this region of the
Smith Chart, the circles of constant conductance and of constant V.S.W.R. are almost
identical and it is seen that the length correction to bring the admittance back to the
real axis is now greater than the previous open-circuit case with the same shunt
susceptance.

A multiplying correction factor, m, applied to the open-circuit approximation

20
m

181 Al = mxAly
1.6
144
1.2

1.0

00 01 02 03 04 05 06 07
Normalized load conductance, with b = 0

Figure 5.13 The correction factor, m, for the discontinuity capacitance
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R,\/Rz

\
Wo \R3

L—"
Figure 5.14 The geometry of a T-junction

will minimize the errors of discontinuity capacitance. This factor is plotted in
Figure 5.13 as a function of the normalized real part of load admittance.

5.5 THE T-JUNCTION

At the junction where two transmission lines are joined in parallel to a common input
line, the electric fields and current flow in the lines are distorted. This is a common
situation in microstrip circuits, occurring, for example, in bias nem{orks: stub
matching networks, hybrid couplers and power dividers. A typical T—Juncuc?n of
three transmission lines is illustrated in Figure 5.14, with the shunt line having a
different characteristic impedance to the main through transmission line. Reference
planes, Ry, R, and Rj, are taken as shown. . )

The quasi-static equivalent circuit, Figure 5.15, assumes that line cross-sectional
dimensions are very much smaller than the wavelength, and includes a transformer
with turns ratio 1 : n. If there is no dispersion, n = 1.

The normalized discontinuity inductances, L,/(L,, xh) and Lp/(L,, xh), are
mostly negative and independent of the substrate material (assumed non-magnetic)

R R,
!1 L, Ly
— O B0
201 Cl' % ZOI
L,
Ry
1:n \
Zgy

Figure 5.15 The T-junction equivalent circuit
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wy/h
0 05 10 15 20 25 30
1 1 1 1 1
wy/h 0.2+
0 05 10 15 20 25 30
0 1 ] | 1 0
-0.1 024 30
Ly, ~02+ Ly, -04-
1 w;/h=3.0
Lw‘h—O.B- ! 30 LWZh—O,s—
I
-0.44 05 -0.8
-0.5 -1.0
(@) -12
-14

(b)

Figure 5.16 Normalized discontinuity inductance values for a T-junction, (a) for the
straight-through arm and (b) for the stub arm, from Neale and Gopinath [5.15] (® 1978,
IEEE)

and have been evaluated by Neale and Gopinath [5.15] for 2 number of cases. Their
results are summarized in Figure 5.16.

The normalized discontinuity capacitance, Cy, is also expected to be negative
when the reference planes are taken as in Figure 5.14, since some of the fringing
electric fields, especially from the through line, will no longer be present. The
normalized capacitance values from Gopinath and Gupta [5.23] for a T-junction that
has equal width lines are presented in Figure 5.17. In [5.23], results are also given for

-04

=0.54 9.6
Cr /
Cxh

—0.6

-0.74

~0.8
4

™I
w—

1 w/h

Figure 5.17 Normalized discontinuity capacitance values for a T-junction with equal width
lines, from Gopinath and Gupta [5.23] (© 1978, IEEE)
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unequal line widths, provided that w/h =1 for the through line. These latter results
may be of interest for designs on &; = 9.6 substrate material, where w/h = 1 gives a
50Q line.

Example 5.4

A single-stub matching circuit is used to match a load, Z; =50 +j50Q, to the input
ransmission line. 50Q characteristic impedance lines on a 1.0 mm thick, &, =9.6
substrate are used throughout. The theoretical solution to the matching problem is
illustrated in Figure 5.18. What are the line length corrections that have to be made to
account for the T-junction discontinuity effects? Assume (i) low frequency
approximations are valid and (ii) that the open-circuit end correction has been
considered separately.

Solution:

With low frequency approximations, the dispersion effects will not be considered
and the transformer tums ratio for the shunt arm will be assumed as 1 : 1. The
three inductances in the equivalent circuit for the T-junction, Figure 5.15, are
individually converted to their respective extensions in a S0 line. The negative
inductances between the planes R, and R, are equated to negative lengths of line,
which represent in the practical line an extension of R, towards the source with a
similar extension of R, towards the load. The negative lengths of line also have
negative capacitance which has to be taken from Cr, ie. the total junction
capacitance C; will become less negative and maybe even positive. A similar
calculation for the stub line is also made. Now, the stub line in effect has some
shunt capacitance in parallel with it at the junction, and its line length must be
further adjusted to give the desired total shunt susceptance at this plane
(i.e. +j0.02S in this case).

For a 50 characteristic impedance microstrip line with £ = 9.6, the line
parameters are w/h = 0.991 and .4 = 6.44. A value of w/h =1 will be assumed
here. At the planes R, and R, the normalized discontinuity inductance

Ly

Twl_h = -0.07
i.. the inductance of a length of line, Al; = Al, =—0.07h. For the stub arm
C RN I (Here, w; = wy)
h Ly,h
p—— h=h/d ——
INPUT RziR, ILOAD]
ol
L=%

open circuit —= —l-

Figure 5.18 The matching circuit for Z; =50 +j50 Q to a 509 line
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Thus, with h = 1 mm, Al| = Al =—0.07 mm and Aly=-0.38 mm. The junction
capacitance for the equivalent circuit from Figure 5.17 is C; =~0.58(C x h) pF.
To this must be added the capacitance of the length (Al; + Al, + Aly) of 50Q
transmission line. With €. = 6.44, the total junction capacitance

V Eeff <

CJ = CXZO

(0.07 +0.07 + 0.38 - 0.58)h = -0.017pF

The cancellation of Cj cannot be achieved by further reference plane
adjustments at the junction and, from this point on, the solution will depend both
on the frequency and the circuit environment. Taking the frequency as 2.0GHz,
the normalized shunt susceptance of C; is —j0.011 at the plane R3. Thus for
single-stub matching, the stub admittance in this case must now be +j1.011,
instead of being ideally +j1.0. This value can be achieved by increasing the stub
length from 0.125X to 0.1259A. This increase in stub length is equivalent to
moving Rj3 out from the junction by 0.0009A and keeping the stub length to Ry
unchanged at /8.

The microstrip wavelength at 2.0GHz is 150/y/€qg = 59.11 mm. Hence for
the final circuit, the distance from the load to the center line of the stub is

fj = 1478 + 0.07 = 14.85mm
and the stub length
I, = 59.11x0.1259 + 038 = 7.82mm

Corrections for the open-circuit termination of the stub line will further reduce Z, .

5.6 SERIES GAPS

The series gap in a microstrip line, Figure 5.19a, has the obvious property of a d.c.
open circuit that may be useful in a bias-feeding network but, as illustrated, will
probably also have a high impedance at microwave frequencies because of its small
capacitance value. The gap may be used as a coupling element between resonators of
a band-pass filter although, in Chapter 9, it will be seen that this is not the preferred
coupling mechanism, especially if a large amount of coupling is required. By
exciting a resonator through a series gap, measurements of discontinuity effects have

SF Cln
1

f

(®)

Figure 5.19 (a) A series gap in a microstrip line with (b) its equivalent circuit
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been made with the discontinuity, e.g. a corner or a T-junction, built into a resonant
length of line [5.12, 5.24). e of
The equivalent circuit for a gap may be represented as a m-network 0
capacitors, Figure 5.19b. At a voltage maximum along the line, the §huqt
capacitances may be equated to line extensions as was the case for an open-circuit
terminated line, while the series capacitance component essentmlly remains unaltered.
In this section, only gaps between two equal width lines are considered. For u.nequal
line widths, the shunt capacitance components would be represented as different
capacitance values. ) i
The capacitance values for a very large gap separation approach that of the
open-circuit terminated line capacitance for C; and zero for Cy,. Conyers'ely for very
narrow gaps, C; tends to zero and Cp, steadily increases as the separation 15 reduced.
The theoretical values of the equivalent circuit capacitances are found l?y
considering the even- and odd-mode capacitances of th'e gap, excited as shown in
Figure 5.20. The Benedek and Silvester method [5.20] is pr.efcrred to that of Farrflr
and Adams [5.19], since the former is concemned directly with the excess charge 1.n
the vicinity of the gaps, while the latter approach i's.one where the excess charge 1s
determined as a difference of two much larger quantities. ) J
From Figure 5.19, it is seen that the capacitance from the strips at +V to groun
for the even mode is

Ceven = 2C (5.24)
while for the odd mode, between +V and ground

Codd = C1+2Cy (5.25)
Thus, if Ceyen and Cggq are known, then

C
¢ = ———"';e“ (5.26)
Codd - Cy

and = 45— (527)

The even- and odd-mode capacitances for gaps on an £ =2.5 sgbstrate are
taken from Benedek and Silvester [5.20] and plotted as normalized capacitances Clw
and as a function of normalized gap separation s/w for w/h = 0.5, l.and 2 in Figure
5.21. Further capacitances curves are presented in [5.20} and Go.plnath and qutg
[5.23], and the results have been presented as a closed form equation over a Iml‘;ti\ ‘
range of parameters for &; = 9.9 and with better than 7% accuracy by Garg and Bal
[5.17]. Measurements supporting the theory and including the frequency dcpender.lce
of the capacitance values have been given by Ozmehmet [5.25]. The following

S
+V ]‘—’15 +V vV o -V

O e =

= Even mode - 0Odd mode

Figure 5.20 Even- and odd-mode excitation across a series gap
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Figure 5.21. The _norma}ized even- (dashed) and odd-mode (solid) capacitances of a series
gap, separation s, in a microstrip line on an g, = 2.5 substrate, from Benedek and Silvester
[5.20] (© 1972, IEEE)

example illustrates how the curves may be used to estimate the capacitances of a
practical gap.
Example 5.1

Estimate the IT-network capacitances for a 1.5 mm gap in a 50Q microstrip line that
is constructed on a 1.58 mm thick, € = 2.5 substrate.

Solution:

The estimate of the capacitances is made in the following manner with the results

presented in the table:

i) Calculate s/w for each of w/h = 1 and 2; these being the parameters for the
curves in Figure 5.21.

ii) Read off the values for the normalized even- and odd-mode capacitances in
pF.m™! from Figure 5.21.

iii) Knowing w for each case, calculate the values for Ceven and Cp4q.

iv) From Appendix 3, for a 50 line it is found that w/h=284.

v) Assuming that for constant h and s an increase in w will linearly increase the
two mode capacitances, then for both Ceven and Cpgq

|,
w/h=284

L (284-20) [Cl _CI J
wh=20 (20-10) wh=20  lwh=10

5.1

52

53

5.4

55
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vi) Evaluate the IT-network capacitances, C; and Cj,, from (5.26) and (5.27).

Step w/h=1.0 w/h=20 | wh=284
® siw 0.949 0.475
Gi) Ceven/w pF.m™! 25.5 20.9 -
(i) Codd/w  pFm™ 27.5 23.7 -
(i), v) | Ceyen fF 40.3 66.1 87.7
@ii), (v) | Coaq fF 435 74.7 100.8
o |G fF - - 43.8
~v) | Cpp fF - - 28.5

Thus, an estimate of the series gap IT-network capacitances is C; = 44 fF and
Cy=29fF.

EXERCISES

The conductor pattern for an open-circuit terminated half-wave resonator is fabricated on a
3.2 mm thick substrate with €. =2.3. If the pattern has negligible thickness and is 6.0 mm
wide by 110.0 mm long, calculate its resonant frequency. Ignore dispersion effects.

Estimate the equivalent line length and characteristic impedance for a right-angle comer in a
50Q line on an g, =2.5 substrate
i)  with a square comer section,
i) with a mitered corner section,
Calculate the impedances at 2,0GHz that are associated with the discontinuity effects given by
the equivalent circuit in Figure 5.11. If the 40.9Q line is terminated with a matched load, what
is the input impedance, normalized to the 93.2Q line at the discontinuity
i)  ignoring discontinuity effects,
ii) including discontinuity effects?
The equivalent circuit for a typical step discontinuity is shown in Figure 5.8. If the
discontinuity effects are small, ie. |Z,| « Z; and |Y,| < Y,, the T-equivalent circuit may
be redrawn without significant additional error as one of the L-networks as shown below.
Consider the case of a discontinuity in an otherwise output matched transmission line
(Zpp =509) where Z; and Y, have discontinuity impedances of +jl and —j4000Q
respectively.
Calculate the input impedance at plane A for each version of the equivalent circuit and
comment on the importance of the order in which Z; and Y, appear as their values increase.

A A
Vo4 A2
o —— B0
Zo Yo== Zy, Zy T Ye Zg

The theoretical position for an ideal 30Q quarter-wave transformer on a microstrip transmission
line, &, =4.0 and h = 1.0 mm, that matches a load at the end of a 50Q line to the 509
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The Smith Chart
and its uses

6.1 INTRODUCTION

A load placed at the end of a transmission line with an impedance not equal to the
characteristic impedance of the line will reflect some or all of the incident forward-
traveling wave, to create a wave that now travels in the reverse direction. The
combination of forward and reverse waves along the line sets up standing wave
patterns. In this chapter the reflection coefficient at the load, as well as those that
represent the ratio of reverse to forward waves at any plane along the line, will be
taken as voltage reflection coefficients, i.e. the ratio of the voltages carried by the
reflected and incident waves.

The presence of a standing wave along the line in many circuits may be
detrimental to the overall operation of the system. For example:

i) With reflected power from the load, in most practical situations there will not be
maximum power transfer to the load.

ii) The input impedance will depend critically on the length of the line from the
input plane to the load.

iii) The interaction between two or more reflections will cause a frequency dependent
response that is determined by the electrical lengths between the reflections. This
may be ideal in the design of a band-pass filter but, unless specifically designed
for, normally is detrimental to performance.

iv) Both the output power of an oscillator and its frequency may be perturbed by the
uncertain load impedance that is attached to it.

v} For high power systems, although less likely to be found in microstrip circuits,
the presence of peaks of voltage and current along the standing wave will reduce
the power carrying capability.

These effects are reduced if one or both of the ports of a circuit are matched to
the characteristic impedance of the connecting transmission line. The reader will
recall from Chapter 2 that the word "matching” may refer either to matching for no
reflections or to conjugate matching for optimum power wansfer. In this chapter,
while it is the matching for no reflections that is the main concern, conjugate
matching is also considered.

The construction of the Smith Chart as a graphical aid for transmission line
problems will be developed and important features, such as its relationship to the
reflection coefficient and its use as either a normalized impedance or admittance chart,
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will be discussed. For clarity, most of the charts will be drawn in a simplifed form,

The load impedance is evaluated first from measurement data, Then a wide
range of techniques will be introduced, that may be used to match a load to the
characteristic impedance of the feeding line. There are advantages in being familiar
with the majority of matching techniques for, while some of them may be more
applicable for microstrip circuit design than others, an improved working knowledge
of transmission line networks will be gained by a more thorough study of the topics.
In general, the transformation between two complex impedances will require the
determination of two real parameters associated with the matching network. These
parameters will be either line lengths, as in single-stub matching, or a combination of
a line length and a characteristic impedance, as in quarter-wave transformer matching.
It is not usual practice for all the line lengths to be fixed and only two characteristic
impedances to be evaluated as this approach is tao restrictive on the range of load
impedances that may be matched within the range of realizable characteristic
impedances.

6.2 THE SMITH CHART

The Smith Chart is useful as a graphical aid in the design and understanding of
transmission line problems. The chart is a plot of the reflection coefficient, I', in the
complex plane and, as such, any value of I' may be plotted with respect to the origin
at the center of the chart. There is a one-to-one correspondence between I' and the
normalized impedance z, both of which are complex quantities, at any point along a
transmission line. For easy conversion between I and the impedance that produces it,
contours of constant resistance and reactance are overlaid on the complex plane. In 2
passive circuit with | ' | <1, the chart may be bounded by | T | = 1, still covering all
possible impedances. Since the underlying basis of the chart is the reflection
coefficient, moving along a lossless transmission line causes the reflection coefficient
to move along a circle with its center at the center of the chart. A complete revolution
is achieved in a half wavelength.
Consider the complex representation of I}, as illustrated in Figure 6.1 where

L= [IL|/¢ (6.1)
IMAGINARY
AXIS
ITLi o Lin=[TL1 /90— 28!
corresponding to corresponding to
L)X Tin + JXin
=281
9
REAL AXIS

Figure 6.1 The reflection coefficient plotted on the complex plane
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On this diagram of complex reflection coefficients, it is possible to draw the loci of
constant normalized values of resistance and reactance, r and x. This will lead to the
Smith Chart.
If the axes on Figure 6.1 are labeled u and jv respectively, then, in general
I = u+jv (6.2)

However, from (1.44), the reflection coefficient and normalized impedance at any
plane are related by
z—-1 _ r+jx-1

z+ 1 r+ jx + 1 (6.3)

Equating (6.2) and (6.3) for I leads to two equations, one for the real parts and the
other for the imaginary parts. From these equations, either one of the unknown
variables (r or x) may be eliminated, giving the other as a function of u and v, namely

2
__r 2 _ 1
{“ r+1] YT Gy (6.4)

g 1 2 1
and [u—l] + [V - ;] = ;7 (6.5)
If r and x are constant, (6.4) and (6.5) are equations of circles that form the basis of
the Smith Chart. With r =0, (6.4) becomes
v+ v =1 (6.6)
giving the equation of a unit-radius circle with its center at (u=0,v=0). All
impedance values with a positive real component lie within this circle, shown in

Figure 6.2, with the loci of constant r and constant x being circles or portions of
circles within this unit-radius circle. The position of the other major circles shown in

$

IT|=1,1=0

180° }—%=0 0° —wu

Figure 6.2 Major elements in the construction of the Smith Chart
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Figure 6.2 may be verified from (6.4) and (6.5). To be useful as a graphical aid in
transmission line work, the finer detail of the intermediate values of resistance and
reactance values is desirable. This is provided on commercially available charts such
as that illustrated in Figure 6.3. Design examples in this book will use skeleton charts
for clarity.

Admittances
The normalized admittance, y = 1/z. However, with
1+T
T 1-T (6.7)
where I is the voltage reflection coefficient, then
1-T
T 1+r1 (6.8)

Thus the transformation to the normalized admittance point is obtained by taking the
negative of the voltage reflection coefficient vector, this being equivalent to a 180°
movement around the chart. The same chart may now be used as an admittance chart,
with the resistance circles read as conductance circles, g, and the reactance circles
becoming the susceptance circles, b.

6.3 MEASUREMENT OF A LOAD IMPEDANCE

6.3.1 Measurement based on the voltage reflection coefficient
When an unknown load impedance is attached to a transmission line that has a
characteristic impedance Z;, then, for every possible load impedance, there will be a
unique complex voltage reflection coefficient at the plane of the load, given (1.44) by
ZL -7
Z,+ 2 (6.9)
In particular, it is seen that a short-circuit termination replacing the load
impedance will give I} = —1. The short circuit is used to provide a reference for
both the magnitude and phase in reflection coefficient measurements, when for
example a network analyzer is used to measure load impedances.
The normalized load impedance, z, , may be derived directly from (6.9) as
I +1 ‘
-1 (6.10)

or obtained directly from the Smith Chart once I} has been plotted. As was seen in
§6.2, the radial distance on the chart is a linear measure of |T} |, varying from zero
for a matched load at the center of the chart to unity for all pure reactances. The
angle of I, is read in exactly the same way as angles in any complex plane, by going
counter-clockwise from the zero-angle position. An open circuit with L =1/0°
gives the zero-angle reference. These points are emphasized in Figure 6.4 for a
normalized load impedance of 0.16 + j0.37. Since the phase angle of the reflection
coefficient at some point becomes more negative as the distance / between that point

I, =

Z, =
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New Providence, NJ., USA.) !
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open
circuit,
zZ =

Figure 6.4 The determination of a load impedance from its voltage reflection coefficient.
The I, shown corresponds to Z, = 0.16 +j0.37.

and the load is increased, see Figure 6.1, it follows that a clockwise rotation on the
Smith Chart is required for movement along a transmission line towards the
generator, and an anti-clockwise rotation for movement towards the load.

6.3.2 Measurement based on the standing wave pattern

A standing wave pattern is set up when a transmission line is terminated with an
unmatched load. From measurements made on a typical voltage standing wave
pattern, Figure 6.5, the normalized load impedance may either be deduced from the
Smith Chart or calculated from first principles, using (6.10).

0.1 DR— A/2 ——l
d

——— | —-‘

(b) /\

@ Vmax

A
Tvmin
1
GENERATOR B LOAD
-.— —

Figure 6.5 Standing wave measurements for the detcrmination of the normalized load
impedance (a) with the load termination and (b) with the load replaced by a short circuit

i
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The procedure is as follows:

i) Measure the voltage standing wave ratio (V.S.W.R.), S, on the line terminated
with the unknown load. )

ii) Measure the position of the minima on the line terminated with the unknown
load.

iii) Measure the position of the minima on the line terminated with a short circuit at
the plane of the load.

The determination of a load impedance from a typical set of measurements is now

illustrated using specific values.

Example 6.1

An unknown' load sets up a standing wave with a V.SW.R. = 3.0. The voltage
minimum of the standing wave pattern is 0.1 to the generator side of the voltage
minimum plane that is found when a short circuit replaces the unknown load.
Calculate the normalized impedance of the unknown load.

Solution:

The standing wave pattern that corresponds to this set of data is illustrated in
Figure 6.5, with the separation between the two planes A and B being d = 0.1A.

The standing wave pattern is repeated every half wavelength along the line,
consistent with the fact that impedances on the line are equal at any two planes
that are an integral number of half wavelengths apart on a lossless transmission
line. A standing wave pattern that does not possess good symmetry and
repetition indicates that serious errors may be caused by the presence of multiple
frequencies, attenuation, or poor dimensional tolerances that cause uneven
coupling of the detector to the standing wave pattern. The separation between the
clearly defined voltage minima of the standing wave pattern for a short-circuit
termination may be used to calculate the transmission line wavelength at the
operating frequency. When the line is terminated with a resistive load with a
magnitude SZ, it follows from (1.49) that the V.S.W.R. will be S. Here S is the
ratio of the voltage maximum to voltage minimum of the standing wave pattern
and is given by

S = Vmax - Vel + 1V
Vinin Vel - [Vl
with Vg and V; being the forward and reverse traveling waves respectively. All
impedances that give the same IFI or S will lie on a circle, centered at the center
of the chart. Thus, to plot the constant V.S.W.R. locus on the chart, draw a circle
with its center at the center of the chart and with a radius passing through z; = S
on the resistive axis. This is shown as Point 1 on Figure 6.6 for the V.S.W.R. of
3.0. At Point 1, the voltage has a maximum value and the current a minimum
value.

At A where there is a voltage minimum and a current maximum, the
impedance is again a pure resistance with the normalized value Zy/S (Point 2).
However, it is the impedance at the plane of the load or at any plane n\/2 away
that is required. When the load is replaced by a short circuit that gives a voltage
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Figure 6.6 Plotting the standing wave measurements on the Smith Chart

minimum at the load plane, there will be voltage minima at all planes a half
wavelength apart towards the generator. One such plane, B, will be considered to
be equivalent to the load plane. The impedance at A, Point 2 on the Smith Chart,
must therefore be moved through a distance of 0.1A towards the load to bring it
to B. The same load impedance is also obtained by moving 0.4 towards the
generator. Point 3 is therefore the load impedance, z=0.48 —j0.61. If it is
required, Point 4 gives the normalized load admittance, i.e. the numerical value of
the normalized admittance is equal to the normalized impedance transformed
through a distance of A/4.

6.4 SINGLE-STUB MATCHING

In single-stub matching, the two variables are the electrical length of the stub / and its
distance d from the load. This matching network is illustrated in Figure 6.7, with all -
the lines in this case having the same characteristic impedance.

A parallel-connected stub line with an open-circuit termination is easily
fabricated as a microstrip line and is the only case to be considered in detail here.
The sections of line, d and /, will generally have the same characteristic impedance as
the input line (as in Figure 6.7) but, as will be seen in Example 6.3, this need not
necessarily always be the case.

In carrying out the single-stub matching procedure, first of all plot the
normalized load impedance, z; , on the Smith Chart and convert it to a normalized
admittance, y; , in preparation for adding other admittances in parallel later. An
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Figure 6.7 A single-stub matching network

open- or short-circuit terminated stub can present any possible value of normalized
susceptance, yg = % jbg,.at the junction plane. This is added to the load admittance
after it has been transformed through the length d. The resultant must give
y = 1 +j0 for the matched condition. Thus the load admittance must be transformed
by moving towards the generator, until a plane where yq = 1 ¥ j bg is reached, i.e.
move the load admittance towards the generator on a constant V.S.W.R. circle until
an intersection with the unit conductance circle is made. The distance so moved
gives d.

For the stub line, in general an open- or short-circuit termination may be chosen
and used as the load admittance for the line but, as mentioned earlier, in microstrip
circuits an open circuit is preferred in practice. Move towards the generator (there is
no other direction to move if one is already at the load plane on the stub line) around
the circumference of the chart, i.e. along the zero conductance circle, until the
required admittance = j bg is achieved. The distance traversed gives I. Thus, the two
electrical lengths d and ! have been obtained.

Finally, the electrical lengths are converted to physical lengths, knowing the
frequency of operation and the effective relative permittivity of the transmission lines.
In practical microstrip circuits, corrections for discontinuity effects at both the open
circuit and the T-junction will be required.

Example 6.2

C.alc1‘xlate the electrical lengths of a single-stub matching network with either a short-
circuit or an open-circuit termination on the stub that will match a load impedance of
(30 +j 70) Q to a 502 input transmission line.

Solution:

The solution for this example is illustrated in Figure 6.8. The load impedance,
normalized to the characteristic impedance of the line, is z;, = 0.6+j1.4 and
plotted as (1). The admittance of the load is therefore y; = 0.259 —j0.603, (2).
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atl, z= 06+jl4
at2, y= 026-j0.6
at3, y= 1.0+j1.85

Figure 6.8 The Smith Chart used for single-stub matching

Now move a distance d wavelengths along the line towards the generator until the
admittance on the line is of the form 1 + jbg, i.e. (3), where the admittance is
1 +j1.85 and the distance d is 0.275). At this point on the line add a stub, in
parallel, with a stub admittance of —j1.85.

A short-circuit terminated stub with an infinite admittance is considered
here, (4). Now move around the Smith Chart on the g = O circle, ie. the
circumference of the chart with a constant unit magnitude for the reflection
coefficient, away from the short circuit, which in this case is the load, until an
admittance 0 —j1.85 is reached, (5). The distance moved around the Smith
Chart, 0.078A, is the required length ! of the short-circuit terminated stub at a
distance 0.275A from the load. The input admittance of the load and stub
combined in parallel is now 1 + j0, i.e. a perfect match at (6).

Using an open-circuit terminated stub, the stub length will differ from that
for the short-circuit terminated stub. Thus, in this case, the stub length will be
increased by 0.25A to 0.328. .

A further pair of solutions may be obtained if the length d is increased to a
new point (3") where the admittance is 1 ~ j1.85. Evaluate d and ! for this case.

Example 6.3

Consider the schematic of a single-stub matching network that is illustrated in Figure
6.9. The load, Z; = (140 — j70)Q, is to be matched to the 50L2 input transmission
line. The other transmission lines are no longer 50C2, but have the characteristic
impedances shown. Find the lengths d and [ to achieve matching if a short-circuit
terminated stub is to be used.
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d
INPUT Zoo=50Q Z5,=70Q (140 -j70)Q
[ ] Zp =400
l SHORT CIRCUIT

Figure 6.9 The single-stub matching network for Example 6.3

Figure 6.10 The Smith Chart solution for Example 6.3

Solution:

Thi§ ex?mple.illustrates variations in single-stub matching brought about by
having lines with characteristic impedances which differ from the input S0Q2 line.
For the three types of line

Zo = 50Q = Yy =002 S,
=70Q = Y, = 001435,
400 = Y, = 0025 S,

N N
8 =
o
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Z, = 140-j70Q = Y_ = 000572+j0.00286 S
= y, = 0.4+j0.2, normalized to Yy, .

First consider the transformation of the load admittance through the distance d to
the plane of the stub where an admittance Y4 = 0.02jBs is required.
Normalized to the Yy, characteristic admittance line, this represents a normalized
admittance of 1.4 + jbg.

Plot z;, = 2.0 - j1.0 at (1) in Figure 6.10 with y, = 0.4+j0.2, (2). Move
towards the generator to intersect the g=1.4 circle (C;) at (3). Here
yqg = 1.4+j1.114,ie. Yq = (0.02 +j0.0159) S, which when renormalized to the
0.028S line, is (1.0 +j0.796).

Now consider the stub. With a short-circuit termination, the load
admittance for the stub is infinite, (5). The stub line has a characteristic
admittance of 0.025S and, for an actual input admittance of —j0.0159S, a
normalized stub input admittance of -j0.636 is required, (6). Moving towards
the generator from the short circuit (5) to (6) gives an electrical length of 0.160A.

A matched network is given with d = 0.150A and / = 0.160\.

6.5 DOUBLE-STUB MATCHING

In single-stub matching it is necessary to place the stub in the correct plane with
respect to the load. In double-stub matching, the two stubs are normally fixed in
relationship to each other and may be positioned at almost any plane with respect to
the load. The adjustable quantities in a practical system are the lengths of the two
stubs, I; and ;. The two stubs are placed generally about A/8 or 3A/8 apart, although
this distance is not critical. However, as will be seen later, it may not be possible to
match out every impedance and, for this reason, a third stub is often incorporated in
stub-matching arrangements. If the stubs are nxA/4 apart and n is odd, the region
representing unmatchable load impedances on the chart is a maximum, while with n
even the stubs are effectively in parallel at the same load plane and the situation
reduces to that of single-stub matching with a fixed position stub. Nevertheless, for
stubs that are close to a multiple of A/2 apart, most load impedances may be matched,
but at the expense of larger standing waves on the connecting lines and a very
narrow-band frequency response for the resultant matching circuit.

This matching technique is a good introduction to the idea of working a problem
from two viewpoints: (i) from the load and (ii) from the generator so that, at some
plane within the network, two plots are obtained. The first plot is of all possible
impedances (or admittances) that may be derived at the plane from the known load
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Figure 6.11 A double-stub matching network

with the variables of the network taken into account up to that plane. The second plot
represents all desirable impedances, knowing that they may be maiched out using the
variables of the remainder of the network between the plane and the generator. The
intersections of the two plots represent impedances that can be obtained from the load
and matched out to the generator and are used to derive the final network parameters.

The procedure is shown by means of a particular case using stub-line positions
that are preset at 0.1A from the load and A/8 apart. The double-stub matching
network is illustrated in Figure 6.11 and the use of the Smith Chart to solve this case
in Figure 6.12.

TO GENERATOR

TO LOAD

Figure 6.12 The Smith Chart used for double-stub matching. The solution, from the load
to the generator, is obtained by going1 2 — + -+ — 6.
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Consider the parallel stub connected at B. This stub may add any required
susceptance to provide the final matched input. Thus the admittance of the network
to the right of B must lie on the unit conductance circle while the input admittance of
the network at a plane just to the left of A must be such that, when it is transformed by
A/8 towards the generator, it moves onto the unit conductance circle. Hence, draw
the circle of desirable admittances by transforming the unit conductance towards the
load from B to A. The resulting circle is shown as (C) for this case, i.e. with a A/8
separation between the two stubs.

Now consider a load with the normalized impedance z = r + jx, (1), giving the
normalized admittance y = g+jb, (2). Transfer the admittance along the line
towards the generator to the plane of A, through a distance of 0.1A. Here the
admittance of the load will be y; = gy +jb;, (3). A susceptance is added by the stub
at A so that the sum of the admittance of the stub and yi, lies on the circle
corresponding to the transformed unit conductance circle. Note that this last step has
been along a constant conductance circle and gives y, = g, +jb, at (4). All points
on this transformed circle (C), when moved by A/8 towards the generator, will
become the unit conductance circle. The admittance to the right of B, (5), now has
the form y3 = 1+ jby and only requires the correct susceptance of the stub at B to
bring the admittance to the characteristic admittance of the line, i.e. y = 1 + jO. The
load has now been matched by the two stubs.

In the case that has just been considered, if the admittance of the load at A, (3),
had been within the g = 2 circle, then the intersection point (4) could not have been
realized on the (C) circle and the two stubs would not have been sufficient to carry out
the matching procedure.

Example 6.4

Match a load impedance, Z; = (30 —j50) Q, to the 502 characteristic impedance of
a microstrip line using double-stub matching with 50 lines throughout. One stub is
placed close to the load, being only 0.02A away from it, while the distance between
the stubs is 0.14A.

Calculate the lengths of the two stubs and illustrate the region of load
impedances on the Smith Chart that cannot be matched out with the stubs in this
given position.

Solution:

The solution to this example is illustrated in Figure 6.13 and may be found in the
following manner;

i) Draw a circle of desirable admittances (C) that, when moved towards the
generator by 0.14A, becomes the unit conductance circle. Parallel-connected
stubs are used here because they are readily fabricated as a microstrip
matching circuit with a simple T-junction between the stub and the main line.

ii) Plot the normalized load impedance, z;, = 0.6 —j1.0 (1), and move it along a

constant V.S.W.R. circle towards the generator by 0.02X to (2). Convert to
the input admittance of the load and 0.022 line, y = 0.543 +j0.917 at (3).
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Figure 6.13 The Smith Chart solution for Example 6.4

iii) The stub that is closer to the load is used to add susceptance and move the

iv)

v)

vi)

admittance from (3) along a constant conductance circle to intersect at one of
two points with the circle of desirable admittances at that plane, (C). Using
an open-circuit terminated stub, the solution at (4) will lead to shorter stub
lengths and will be used here. At (4), y = 0.543 + j1.614 and is obtained by
adding a parallel stub with a normalized admittance of + j0.697.

Moving from (4) by 0.14A towards the generator gives y = 1.0-j2.278 at
(5) and, with the addition of a normalized stub admittance of +j2.278, the
matched condition at (6) is obtained.

Open-circuit terminated stubs are also to be used to go from (5) to (6). The
open-circuit admittance at (7) is moved towards the generator to
y =+j0.697 at (8) and to y = +j2.278 at (9), giving lengths of 0.097 and
0.184 for the stubs closer to the load and generator respectively,

If point (3) had had a normalized conductance greater than 1.683, then no
addition of any susceptance value would have given an intersection with
circle (C). Converting these unmatchable admittances to impedances and
moving them by 0.02A towards the load gives the shaded circle on Figure
6.13. This circle represents all normalized load impedances that cannot be
matched with the present spacing of parallel-connected stub lines.
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6.6 QUARTER-WAVE TRANSFORMER MATCHING

6.6.1 The single-section transformer

Consider a transmission line network as illustrated in Figure 6.14. In general, from
(1.54), the input impedance of a line that has a characteristic impedance Z. and length
I'and is terminated with a load impedance Z, is

g e Z, cos(Bl) + jZrsin(Bl)
in = Zr Zycos(Bl) + jZ, sin(Bl) (6.11)

Here, Z_ is the load seen by the Z; line at its junction with the Zg line. If the line
length [ is A/4, the line is known as a quarter-wave transformer. In that case
cos(B/) = 0 and, if the input to the transformer is to be matched, then
72
o= 7y = L
Zin ° "z (6.12)

ie. Zr = \NZy,Z, = ZoVzinz, (6.13)

As the characteristic impedances Z; and Zp are in practice real quantities, the
impedance at the load end of the transformer must also be real if a matched condition
is to be realized. The line impedance will look purely real at the voltage maxima and
minima planes. Any load may be transformed to the real impedance at such a plane
through an appropriate length of transmission line. This fact, then, together with the
properties of the A/4 transformer, allows any load impedance that has a finite
resistance component to be matched to the characteristic impedance of the input line.

The two unknown quantities that have to be determined for a quarter-wave
transformer matching network are the distance from the load to the transformer, d,
and the characteristic impedance of the transformer, Zr.

The matching procedure is as follows:

i) Plot the normalized impedance of the load to be matched zp = Z /Zgon a
Smith Chart.

il) Move around the chart on a constant V.S.W.R., circle, i.e. with |T'| constant, until
the circle intersects the resistive axis, giving a plane where the impedance looking
into the transmission line is real. This normalized impedance is the z; for the
quarter-wave transformer in (6.13). The rotation around the chart in a clockwise
direction, towards the generator, gives the line length d.

TRANSFORMER d
_ .
INPUT Z, Zr Zy %Z’L
Zin Z
I=X/4

Figure 6.14 Matching with a single-section quarter-wave transformer




132 Chapter 6

iii) For a matched condition requiring zj, = 1+ j0, the characteristic impedance of
the transformer section becomes

Zy = Zy\z; (6.14)

iv) As the constant |T'| circle of part (ii) intersects the real axis at two points, there
are two possible solutions for quarter-wave transformer matching, one with

Zr > Zy and the other with Zp < Zy. Naturally, the line length d will be
different for the two cases.

Example 6.5

i) Calcul'atc the po\sipjgm and characteristic impedance of a quarter-wave transformer
that will match a 16ad impedance, (15 + §25)Q, to a 50 input line.
il) What is the magnitude of the reflection coefficient within the transformer?

IR LT Eansiomy (¥}

Solution:

i) Thi_s example uses the variables given in Figure 6.14 and is solved using the
Sr}nth Chart, as is illustrated in Figure 6.15. The two unknown quantities for
this matching network are the length of the 509 line that connects the load to

the output of the transformer and the characteristic impedance of the
transformer. Thus

a) Plot the load impedance normalized to the 50Q line, (1).

Figure 6.15 The quarter-wave transformer solution for Example 6.5
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b) Move towards the generator along the 50Q2 line to a plane where the
impedance is real, (2). Here Z; = 50 x z; = 211.5 and the distance
moved is 0.171A.

¢) The quarter-wave transformer impedance

Zr = Y50x2115 = 1028Q

ii) The magnitude of the reflection coefficient within the transformer is

|1"| = l@__@l = 0.346
Z + 272
The magnitude and phase of the reflection coefficient within the
transformer are further illustrated by following through the plots on the Smith
Chart to the input of the nctwork. Point (2) is the impedance normalized io a
50Q line at the load end of the transformer. Since the absolute impedance at
this plane remains constant, renormalizing to the transformer characteristic
impedance gives
. _ o 50 _ ;
Point (3) = Point (2) x 08 = 2.057+j0
Moving along the transformer towards the generator gives (4). This
impedance, when renormalized to the 50%2 input line, provides the perfect
match at (5). Along the line from (3) to (4) there is a constant V.S.W.R. of
2.057 with |T'| equal to 0.346.

6.6.2 Multiple-section transformers
Multiple-section quarter-wave transformers are most often used when a low residual
mismatch is required over a broad band of frequencies between transmission lines
that have different characteristic impedances.

The simplified theory below assumes that the complex reflection coefficients,
caused by each step in transmission line characteristic impedance in an otherwise
matched system, may be added together at the input as vector quantities to give the
resultant mismatch reflection coefficient. With only small magnitude reflections from
each transition, second order reflections of the form INT;, are ignored. At any change

~of characteristic impedance between two matched transmission lines from Z, to Zg,

the voltage reflection coefficient as seen from the Z,, line is
Zyg—Z,  (ZglZp-1

r = =
Zy+Z, (ZglZp+1 (6.15)
Substituting w = (Zz/Z,) -1 gives (6.16)
w1 wow
F=9iw "2 2%y (6.17)

Provided that w is small, which is the case if the impedance change is small, the first
two terms of (6.17) are identical to those for the series expansion of
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1 = Llp_w
Lin(1+w) 2 MR ], [w] <1 (6.18)

ie. I = 1in(Z5/2,) (6.19)

The benefit of this approximation, where even the third term of the expansion in
(6.17) differs by only w3/12 from (6.18), will be appreciated when the range between
the two characteristic impedances Zy and Z; is subdivided to give intermediate

characteristic impedances for the specific ratios of the reflection coefficients at the
junctions.

) Consider a two-section quarter-wave transformer, as illustrated in Figure 6.16,
with / = A/4. With no loss of generality, it will be assumed that Z; >Z,. Ateachof
the transitions between the lines, the reflection coefficients are given by

G = Lin(z,/2g)
L = 1in(zg/z2,)
and 0= 1i(z,/zp) (6.20)

The three reflection coefficients will be real and positive if Z,>Zp>Z,>Z,.
If ti3e individual reflection coefficients are small, the resultant reflection coefficient at
the input does not contain any terms such as II5, so that

i

U

[ = I + Ge 3B ¢ rye bl (6.21)
For quarter-wave sections of transmission line with [ = A4
Fr=nhL-nL+0 (6.22)

and it can be seen that, if ::T3 = 1:2:1, there will be no resultant reflection
coefficient at the input. In general, the required individual reflection coefficient ratios
will be given by binomial coefficients, [6.1].

At the input and at the design or center frequency, fy, the phase change between
adjacent reflection coefficients is ¢ = 180°, Ata frequency of, say, 0.8 xf, the phase
change is ¢ = 144°. As illustrated in Figure 6.17, the resultant reflection coefficient at
the design frequency is zero. At 0.8 xf; the magnitude of the resultant reflection
coefficient is still small with a magnitude of 0.382 |T;|, i.e. less than 10% of 4 Iil,
which would be the reflection coefficient caused by an abrupt step from Z; to Z,. A
multiple-section quarter-wave transformer matching circuit has bandpass

INPUT Zy

Lo
- ——— T ————-

Al

Figure 6.16 A two-section quarter-wave transformer network
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]
i 180° 144° )
&
0 n I 2
«
r2 \ >
/\ specification V.S.W.R.
F3 __________
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180° i resultant 14 40‘
at center at 0.8, [ frequency

frequency, f
a 0 <+— bandwidth —»

Figure 6.17 The derivation of the resultant reflection coefficient for a multiple-section
quarter-wave transformer

characteristics and it is usval to specify the maximum reflection coefficient
magnitude, or input V.S.W.R,, that may be tolerated, together with the bandwidth
over which the specification is to apply.

The curve shown in Figure 6.17 is typical of a maximally-flat response, where
any further broadening of it would result in pass-band ripples. If, in the two-section
transformer that has been discussed, the transformer impedances are recalculated such
that

IN = I3 = kI, where k>0.5 (6.23)
then there will not be a perfect match at the center frequency. However, there will be
two frequencies, one on each side of the center frequency f;, at which a perfect match
is achieved. For all frequencies in the immediate vicinity of the two matched points,
the resultant V.S.W.R. will be less than that for the maximally-fiat case, [6.1]. This
approach is the basic design philosophy of Chebyshev transformers, where increased
bandwidth is achieved at the expense of a V.S.W.R. ripple of controlled levels within
the design band. A comprehensive treatment for the design of multiple-section
quarter-wave transformers is given by Matthaei et al. [6.1], with detailed expressions
for both maximally-flat and Chebyshev responses.

For a rigorous analysis, let @ be the ratio of characteristic impedances of the
input and output lines, ie. ®=Z,/Z,. For maximally-flat response filters,
expressions in [6.1] lead to the impedances for the two-section transformers as

1
Z, @ (6.24)
3

and Zy = Zyd* (6.25)

while for the three-section case, with transformer impedances, Z,, Z; and Z, the
equation

Zy

W+ 2V - 2VBy - @ = 0 (6.26)
is solved first for y, from which
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Zy = V&, (6.28)
7, oz,
and Ze =y = (6.29)

It is interesting to note that, for the particular case of a maximally-flat two-
Section transformer, the approximations of (6.20) actually give the same line
impedances as those for the rigorous solution.

Example 6.6
Calculate the characteristic impedances for a three-section quarter-wave transformer

with a maximally-flat response that will match a 2009 load to a 500 input line.
Compare the results from the exact and approximate theories.

Solution:
By letting the length of the 200Q characteristic impedance line between the load
and the transformer tend to zero, the 200Q load may be connected directly to the
output of the transformers. For the exact solution, ® = Z, /Z,; = 4.0. Hence
(6.26) becomes

Vi+rdayl —dy -4 =9
giving v = 1.1907 _
and Z,=5954Q, Zp = 100.00Q and Zq = 167.97Q.

The other real solution, y = -3.8, yields negative impedance lines. For the
approximate solution, the voltage reflection coefficients of the impedance steps
considered in isolation are in the ratio

Lo = 1:3:3:1
being the coefficients of the binomial expansion of (1 + x)*. With equations of
the form of (6.20), the total reflection coefficient for a step change between Z,
and Z, is divided into four individual reflection coefficients having the above

ratios.

Thus no= i, |Z)] o 8
1—-—8"2—712_0 —00664

.. _ 25

giving Zy = Zge' = 59460

while I = 307 leads to Zy = 100.00Q

and I3 = 30 leads to Ze = 168.18Q

The exact and approximate solutions for matching this ratio of impedancesare
almost identical, close enough for the fabrication of microstrip circuits.
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6.7 IMPEDANCE MATCHING WITH A TAPERED LINE

Broadband matching between two transmission lines with characteristic impedances
Zy and Z; may be achieved to some extent by using multiple-section quarter-wave
transformers. However, it will always be the case that at twice the design frequency
the sections become A/2 long and the matching performance is no better than that
obtained by joining the two lines directly together. For a broader bandwidth, a length
of transmission line in which the cross-sectional dimensions gradually change from
the characteristic impedance Zg to one of Z; may be used [6.2]. The manner in which
the characteristic impedance of the tapered line changes with distance gives the type
of taper, e.g. exponential, hyperbolic, parabolic, etc., that is used.

Unless there are other very good reasons, it may be most expedient to use a
taper type that has the simplest of geometries and is the easiest to make. Most
tapered transmission line transformers that are one wavelength or more long will
reduce the reflection coefficient to less than 20% of that from a step transition
between the two lines. An increase in transformer length will tend to improve the
broadband match between the two impedances.

The performance of a microstrip taper on €; = 2.32 substrate with a linear width
variation of the line between 15Q and 50Q characteristic impedances has been
analyzed for this book by subdividing the overall length of the taper into 100 short,
but uniform, sections of line. The characteristic impedance and effective relative
permittivity were evaluated for each section. The V.S.W.R. for this model of the
taper, with the output line terminated by a matched load, is illustrated as curve (a) in
Figure 6.18. The performance of this taper, which is of simple construction, is
compared with the best of the continuous microstrip tapers (a Chebyshev taper)
described by Khilla [6.3]. Curve (b) in Figure 6.18 illustrates the Chebyshev taper
performance for the same impedance transformation on an € = 2.32 substrate.

14

m: 1.3_
=
« RN
> 1.2 L N
7’ N
hidd \ Lo TN
1.1 N AR
1.0 T T T T
04 1.2 1.6 2.0

Taper Length, A

Figure 6.18 The performance of a microstrip taper between 15Q and 50Q lines on
€r =2.32 substrate for (a) a linear variation in the width of the taper section in comparison
with (b) a Chebyshev taper from Khilla [6.3}
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6.8 MATCHING WITH LUMPED LOSSLESS ELEMENTS

The lumped lossless elements may be either discrete components or approximations

to lumped inductance and capacitance obtained from very short transmission line
lengths.

6.8.1 Short lengths of transmission line

The reader will recall from §2.2.2 that there are two important approximations that
may be used for short lengths of transmission line. A short length of high
characteristic impedance transmission line may be represented by an equivalent series
inductance, while that of a low characteristic impedance may be approximated by a
shunt capacitance. If the short iengih approximations are not good enough for
matching purposes, then the methods for single- and double-section line matching
that are described in §6.9 and §6.10 could be used.

The short line equivalent circuit derived in §2.2.2 is reproduced in Figure 6.19
for the case of a high impedance line where the inductance, L = LI. For the case ofa
low impedance line, the series inductance is replaced by a shunt capacitance, C=ClL
In terms of the respective characteristic impedances of the lines

L = ZHIGH\J%EI

c (6.1)
c = ey

ZLOWC (6.2)

< g

N Sy s—
Zy Zyon Z,

. . .
A

oo
Zip— L Zy ?Zo

Figure 6.19 The equivalent circuit of a short length of high impcdahce line

6.8.2 The matching procedure
In this section, the discrete component matching techniques will only be considered
for the simple combinations of series inductance and shunt capacitance illustrated in
Figure 6.20. Similar matching procedures may be used for other component
combinations, such as the series and shunt combination of capacitors in Exercise
6.15.

Consider case (a) in Figure 6.20. If the normalized admittance of the load with
series inductance is of the form y = 1.0 —jb, then the capacitor may be used to add
the necessary positive susceptance to give a matched condition. For the matching
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(b)

Figure 6.21 Impedance regions for the lumped element matching networks of Figure 6.20

procedure, transfer the negative susceptance half of the unit conductance circle to the
impedance chart, i.e. (C;) becomes (C;) on Figure 6.21. Provided a load impedance
lies in Region (i), i.e. the lower half of the chart bounded by (C;) and (Cj), an
inductance can always be found with a positive reactance which, when added in series
with the load, will produce an impedance on (Cy) and thus an admittance on (C3). On
the other hand, in order to match with a network of type (b), the load admittance must
lie within Region (i), i.e. the load impedance is in Region (ii).

Example 6.7

Using the Smith Chart, calculate the component values in Figure 6.20b that will '
match a 150Q load to a 50Q source impedance at 100MHz.

Solution:

The Smith Chart solution is illustrated in Figure 6.22. Plot the normalized load
impedance, z; = 3.0 +j0.0 as Point (1), and convert to the admittance chart to
obtain yp = 0.333+j0.0 at (2). As the series inductance will add positive
reactance to complete the matching process, the negative reactance half of the
unit resistance circle is transferred to the admittance diagram to become (Cy).
Along a constant conductance path, add positive susceptance to the load
admittance to give an admittance that lies on (Cy), i.e. y = 0.333+j0.471 at(3).

i
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Figure 6.22 The Smith Chart solution for Example 6.7

Thus ﬂYC— = 0.471 or, at 100MHz, C = 15.0pF.

0
Transfer (3) back to the impedance diagram at (4), where z = 1.0 - jlal4. A
normalized positive reactance of +j1.414 for the series inductance completes the
matching procedure.
oL

Hence Z = 1.414 or, at 100MHz, L = 113nH.
0

The resultant matching network at 100MHz is as shown in Figure 6.23.

113nH

W
Zin=50Q — 15.0p1=_|_ 150Q
O

Figure 6.23 The matching network at 100MHz for Example 6.7

6.9 SINGLE-SECTION LINE MATCHING

The representation of a short length of transmission line by a lumped L or C is, of
course, only an approximation. The IT-equivalent circuit of §2.2.1, on the other hand,
is an exact equivalence for all lengths of line. This IT network could also be used for
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T
Zip—» Zy
X ! .

Figure 6.24 Impedance transformation with an arbitrary length of transmission line

matching purposes, but the matching procedure is actually better carried out in terms
of the transmission line itself.

When the line is A/4 long, the particular case of the quarter-wave transformer
occurs, as considered in §6.6. In the present section, the matching properties of a
transmission line of arbitrary length [6.4] are discussed, with its linc length and
characteristic impedance as variables.

Consider the network illustrated in Figure 6.24 where, in a S0Q characteristic
impedance system, a normalized input impedance z;, is to be derived from the load
impedance, z) . For conjugate matching to a source impedance, as discussed in
§2.1.5, zjp may be complex, while when no reflections at the input are required,
zjp = 1+j0. Plot z;, and zj; on the Smith Chart, Figure 6.25, as (1) and (2)
respectively. When these two impedances are each renormalized to the characteristic
impedance of the transformer section, they must lie on a circle of constant IT|,ifa
transformation along the transformer length is to convert one impedance to the other.

. Figure 6.25 The Smith Chart for single-section line matching
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The problem is thus to find a value of Zy, such that when z;;, and z;_ are the result of
normalization with respect to Z they lie on a circle with the origin at the center. A
Systematic way of finding the appropriate Z is based on the following property:

On traversing a length of transmission line, the impedance along the line
continues to traverse a circle in the T plane — that is when plotted on the normalized
resistance and reactance curves — even when the normalization is done with respect
to an impedance that is not the characteristic impedance of the line. If the circles are
normalized to real impedances, the center of each new circle will continue to lie on
the real axis.

In Figure 6.25, (C,) is the circle that results when the normalization is with
respect to Zy and (C;) when the normalization is with respect to Z,, both circles
nevertheless referring to the impedance variation along the Zy line. The center for
(C;) is at the intersection of the real axis and the perpendicular bisector of the line
from (1) to (2). That (C;) is a circle follows from the properties of the bilinear
transformation
1+T
1-T (6.32)
which transforms between the normalized impedance plane and the reflection
coefficient plane. A bilinear transformation transforms circles into circles, with some
circles becoming straight lines in limiting cases [6.5]. Since (Cy) is a circle in the
I™-plane, z is also a circle in the impedance plane. On multiplying z by the constant
(Z1/Zg), the resulting impedance continues to be a circle in the impedance plane.
Transforming (Z1/Zg)xz back to the I-plane via (6.32) again produces a circle,
namely (C,).

To see how this property allows Z; to be systematically determined, first it is to
be noted that real impedances lie along the real axis on both the (C}) and (C,) circles
and their normalized values — ripin, Iinax on (Cy) and ropip, Tmax on (C;) — only
differ by a multiplicative scale factor, k, so that for the renormalization to the
transformer section

z =

Krmin = Tmip (6.33)

Kfmax = Tmax : (6.34)
with k = Z1/Z,. Thus

K’ IninTmax = Tminfmax (6.35)

Since riyin = (tipax) ), then

k = IminTmax (6.36)

Draw the new circle (C,) and on it plot the calculated load and input impedances
zp/k and zj; [k as (3) and (4) respectively. The movement towards the generator
from (3) to (4) gives the length of the transformer section that has the characteristic
impedance Zy = kZ;.

Example 6.8
A single-section matching line is required to transform a load impedance of
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(100 -j100)Q2 to an input impedance of (65+ j30)Q. Calculate the length and
characteristic impedance of the matching line.

Solution:
It is common for many transmission line systems to have S0 characteristic
impedance for the majority of transmission lines and it is to this value that the
load and input impedances are normalized here. However, the final answer will
be independent of the impedance to which these values are normalized and it is
only necessary to choose a value that gives a clear presentation on the Smith
Chart. The solution is the one that is specifically illustrated in Figure 6.25, with

zp = 2-j2, Point (1)
zi, = 13+ j06 Point (2)

The center of (C,) is at 1 = 2.52, giving Iiyi, = 1.24 and ;0 = 7.26. Thus the
renormalization factor, k, equals 3.00 and the transformer line impedance is
150.0€2. The rpi, and 1y, values for (C) are 0.413 and 2.42 respectively and
the renormalized load and input impedances of 0.667 ~ j0.667 and 0.433 + j0.2
are plotted as points (3) and (4). Hence the electrical length of the 1509
transformer is 0.156 A, going from (3) to (4).

6.10 DOUBLE-SECTION LINE MATCHING

A pair of discrete matching elements, in particular in the form of series inductance
and shunt capacitance, have been used in §6.8. While these elements may be
approximated by short lengths of high and low impedance lines respectively, a more
general solution [6.6] for matching with the finite line lengths, as shown in Figure
6.26, is presented here.

The high and low impedance lines, Zy;;; and Z, i, are chosen to be typical of
practical lines. For this discussion, the following typical values Zygqy = 100 Q and
Ziow = 30Q are taken. The matching procedure is again one where an intersection
is found between two plots, representing impedances that can be obtained from the
load and those that are desirable, in the sense that they can be matched to the source.

Working from the 50Q impedance source towards the load with
Zy =Zygu = 100Q and Z; = Z; 5y = 30Q, for an input match the following

;Y A
Z, | zZ, zZ, ézL

;—11——4-——12——1

Figure 6.26 The impedance planes and selection of transformer impedances for double-
section line matching
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Figure 6.27 Load impedances that lic between the dashed circles for matching with a
double-section transformer, Z; = Zygy = 100Q and Z, = Z; 5y = 30Q )

imp(f,dances are required at the planes D to A, always looking towards the load. They
are illustrated in Figure 6.27. At each plane the impedance is normalized to the
characteristic impedance at that plane.

AtD: zp = 0.5+ 0.0, for a 50Q impedance at the input end of a 100<2 line.

AtC: the impedance lies on a constant |I'| circle that, through the length I;, will
transform C to D. Thus z., lies on circle (C).

AtB: zg lies on circle (B), i.e. the circle of normalized impedances that when
multiplied by Z,/Z, gives the z. on (C).

AtA: z, must lie within the region bounded by the circles A, and A,, if a
transformation along the low impedance line is to intersect with circle (B).

. {\t the load: Renormalizing A; and A,, i.e. converting A; and A, to the actual load
impedances by multiplying by Z; 4w and then normalizing to Zj, gives the region

between the dashed circles that may be matched to 50Q with the chosen impedance
lines.

The remaining steps of the matching procedure are illustrated in the context of a
numerical example. Figure 6.28 illustrates the regions of load impedance that may be
matched to a 50Q source impedance with one or other sequence of the 30Q and
100€2 transformer line impedances and the shortest overall length of matching
elements. In Figure 6.28, Zy;gy = mZg and Z; oy = nZg, with m = 2 and n = 0.6.
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P = m2n?

Q =n?
Zyign = mZg R =m?
Ziow =1nZg S = m*n~?

Figure 6.28 Load impedances to be matched to 50Q with m=2, n=0.6, using a double-
section matching transformer

Example 6.9
Using 100Q and 30Q transformer sections, find the line lengths that match a
(60 —j 60) Q load to a 50Q input transmission line.
Solution:
From Figure 6.28, it is seen that, to match a normalized impedance of 1.2 - j1.2,
the high impedance line should be closer to the load, leading to a matching
network, as shown in Figure 6.26, with Z, =30Q and Z, = 100Q. The matching
procedure is illustrated in Figure 6.29.
i) Plot the load impedance z;, normalized to 50Q (1) and renormalized to
100Q to give z, at (2).
ii) zg lies on the constant |I"| circle (C,) that passes through (2).
iii) Renormalizing (C;) to the 30%Q2 line gives obtainable values of z; as the

circle (C,).

iv) To match to the 50Q source impedance, zp = (50 +j0)/30 = 1.67, (3), is
required.

v) The required values of z. lie on the constant |I'| circle (C3) that passes
through (3).

vi) Solutions will be given by the intersections of (C,) and (C3). In particular
for minimal line lengths, a solution is given at (4).

vii) (4) is renormalized back to (C,), giving the solution for zj at (5).

viii) [, is the movement towards the generator from (2) to (5) along the 1002

line.
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Zy=Zow = 30Q
Zz = ZH.IGH = 100Q

Figure 6.29 Double-section transformer matching of (60 — j60) 2 to a 50Q source impedance

ix) I} is the movement towards the generator from (4) to (3) along the 30Q line.
For the solution, the following specific values are obtained:

Point(1) | z, | 1.2-j1.2
Point(2) | z, | 0.6-j0.6
Point(3) | zp | 1.667+j0
Point (4) | z¢ | 1.391 +j0.467
Point (5) | zz | 0.417 +j0.140

3 0.0541
L 0.1331

6.11 IMPEDANCE SYNTHESIS

Most of this chapter has dealt with the situation where a given load impedance is
transformed through a matching network to become an impedance equal to the
characteristic impedance of the input line. There are situations, e.g. in Chapter 11,
where the converse is required and a specified impedance has to be derived from a
matched load. While in principle this may be achieved by reversing the steps of any
of the previous techniques, it is better to take a direct approach that makes use of both
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SOURCE \ LOAD [ (30+j70)Q2
]

Zin=(50+j0) !;\ Z,=(30-j70)Q
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Figure 6.30 Ilustrating impedance synthesis with 50Q lines, showing (a) matching a load
(30 +j70)Q2 to a 50Q source, and (b) the reinterpretation of the network in (a) as converting
a 509 matched load into an input impedance of (30 - j70)Q

LOAD | (50 +jO)Q2
T

the conjugate matching properties of a lossless network, discussed in §2.1.5, and the
matching procedures just presented.

Consider the single-stub matching network that was derived for Example 6.2.
This network is redrawn in Figure 6.30a. As there is conjugate matching (50 to
50Q) at the source end, there will also be conjugate matching at the load end.
Consequently, the source impedance as seen from the load will be
Z,o=Z{ =(30-j70)Q. In Figure 6.30b, the network is redrawn in the reverse order,
i.e. the original matched source is now the load, and an input impedance (30 - j70)Q
is obtained. Thus, to derive an impedance Z;,, starting with a matched termination, (i)
choose a load equal to Z3, (ii) carry out the matching process as in Figure 6.30a, and
(iii) reverse the order of the matching elements as in Figure 6.30b. Note that the stub
is now placed at a matched load plane and that the length ! is required between it and
the desired impedance plane. The length / must not be confused with /, the latter
length being arbitrary in both Figures 6.30a and b.

EXERCISES

6.1 The characteristic impedances of the A/8 lines in the figure below may be selected such that
25Q<Z; oy <500 and 509 < Zyg, < 100Q. Using a Smith Chart, construct the region of
load impedances, normalized to 509, that may be matched using this network.

i
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6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

INPUT Zo=50Q

Zuon LOAD

— 1

What normalized load impedances give the following voltage reflection coefficients?

iy 0.7/-30°
ii) 0.5/90°
iit) 0.1/180°
iv) 1.0/0°

The V.S.W.R. for a standing wave pattemn set up by an unknown load is 2.0 with a voltage
minimum at 102.5 mm. When the load is replaced by a short circuit, there are voltage minima
at 25.1 and 123.3 mm, the smaller value being closer to the generator.

i)  What is ithe nomalized load impedance referred 1o the attached short-circuit plane?

ii) If the previous readings had been obtained when the plane of the replacement short circuit
was 5.0mm in front of the actual load plane, what would be the normalized load
impedance at the load plane?

i)  Illustrate on a Smith Chart the region of normalized load impedances that may be matched
using the lumped element network illustrated in the figure below.

ii) What capacitance values are required for the network to match a (30 + jS0)Q load to a
50£2 source impedance at 1.0GHz?

o H_
1] I
INPUT €y C, LOAD

o T

In Example 6.8, the load and source impedances were normalized to 50€2 in order to carry out a
Smith Chart solution. Verify that the same answer is obtained if the impedances are normalized
to 100Q instead.

Calculate the length and characteristic impedance of a single-section impedance transformer,
Figure 6.24, that will match a (70 —j 50) Q load to a 50 source impedance.

In Example 6.4 for double-stub matching, there are two sets of stub admittances that may be
used. Solve the example for the second solution and, having found the required nomalized
stub admittances, determine the stub lengths assuming short-circuit terminations.

The circuit elements shown in the figure below are expressed as nomalized admittances. What
is the distance in wavelengths, {, between the two susceptances if there is to be maximum
power transfer from the matched input line to the load? Is there a voltage maximum or
minimum at plane A, midway between the two susceptances? Deduce the results from a Smith

Chart.
?.o

- | ——

iNPUT -3

L ———}>

Determine the length and position of a single-stub matching network, using 50X2 lines, that will
match a load, (30 +j20) Q, to a 50 input line. With the stub matching network, estimate the
approximate percentage range or bandwidth for the V.S.W.R. to remain less than 1.2, assuming
that the load remains (30 + j20) Q over the frequency range of interest. Hint: Observe on the
Smith Chart how the input impedance varies for a small frequency change.

6.10

6.11

6.12

6.13

6.14

6.15
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A 1000 characteristic impedance line with a 1000 load is to be matched to a 50X line using
sections of 30Q and 120Q lines as illustrated in the figure below. Using the Smith Chart,
determine the lengths, /, and /, as fractions of a wavelength, that are required for the input
match to be achieved.

INPUT  50Q

et —sf— 1, —

The figure below illustrates the conductor pattern for a microstrip network that is to be used to
match a load, (12.5-j37.5)Q, to a 50Q input line. Determine (i) the length I of the open-
circuit terminated stub that has a characteristic impedance of 10092 and (ii) the characteristic
impedance of the quarter-wave transformer necessary to achieve the matched condition. Ignore
discontinuity effects.

LOAD

N L b

Zy = 50Q

I ls—2s = 1000

1 ~— open circuit

With line lengths given in wavelengths where appropriate, match a (15 —j25) Q load to a 502

source with the following methods and constraints:

i)  single-stub matching with 50 lines and an open-circuit stub termination,

ii) double-stub matching with 50Q lines and open-circuit terminated stubs at 0.2 and 0.33A
from the load plane,

iii) quarter-wave transformer matching with the transformer impedance less than 50,

iv) a series inductance, shunt capacitance network with the component values calculated at
1.0GHz, .

v) adouble-section transformer with 25Q and 100Q impedance lines.

509 and 1009 characteristic impedance lines may be matched together at a spot frequency by
alternating lengths of each line type as shown in the figure below. Calculate the line lengths for
a matched condition.

INPUT  50Q

ety —sfe— t; —

i)  Using the approximate theory for multiple-section quarter-wave transformers, calculate the
transformer impedances between a 20 resistive load and a 50Q input line for the
maximally-flat 1-, 2- and 4-section cases.

ii) For the single-section case, show that the result derived in (i) corresponds to the normal
quarter-wave transformer solution.

ili) For the 2-section case, estimate from the Smith Chart the V.S.W.R. at 0.8 times the design
center frequency.

Indicate on a Smith Chart those impedances that may be matched using a series and shunt

combination of two capacitors.
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7 Hybrid-line couplers

7.1 INTRODUCTION

Hybrid-line couplers represent the class of couplers that simulate the properties of the
hybrid-coil transformer, Figure 7.1, in common use in telephony. With each port
correctly terminated, a signal input at port 1 will give in-phase signals equally split
between ports 2 and 3 and no output from port 4. Conversely, a signal input at port 4
will give out-of-phase but equal amplitude signals at ports 2 and 3 with no output at
port 1. The correct choice of loads ensures a perfectly matched four-port device.

Hybrid-line couplers are often simply referred to as hybrids.

An ideal directional coupler may be defined as a lossless reciprocal four-port
network that appears perfectly matched looking into any one port when the others are
terminated with matched loads, i.e. it is matched in every port. It can then be proved
that there must be complete isolation between two distinct pairs of ports, say ports 1,
4 and ports 2, 3 (see Exercise 2.7). When an ideal directional coupler is inserted into
a transmission line with the input connection at port 1 and the output at port 2, as
illustrated in Figure 7.2, then, for a forward propagating wave from port 1 to port 2,
some portion of it will be coupled out at port 3 with nothing being coupled to port 4.
When waves propagate along other port directions, the coupled waves are as shown in
Figure 7.2. Thus, a reverse traveling wave that is incident at port 2 will result in the
coupled signal appearing at port 4, while port 3 is now isolated. The directional
properties of the coupler are now evident, since the signals that are measured on ports
3 and 4 represent a measure of the forward and reverse traveling waves respectively
on the through transmission line, i.e. from port 1 to 2 in this case. For each type of
coupler that is discussed, the ports will be consistently numbered in this manner for
comparison purposes.

Figure 7.1 The hybrid-coil transformer
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por — | *——» [ iy

Figure 7.2 Power flow in a directional coupler

Hybrid-line couplers may be regarded as directional couplers which can produce
an equal power split between the output ports. This definition is good in the main,
but it is possible to have hybrids with an unequal power split. Inherently, a hybrid
and a directional coupler are the same type of device. The only difference is really
one of construction, with the hybrid-line coupler historically arising out of structures
which aimed to produce equal power splitting with good isolation, directional
coupling aspects not being of interest.

The hybrid-line directional couplers that are described in this chapter are thus
constructed from an interconnected symmetrical network of transmission lines. The
characteristic impedances of the interconnecting lines are chosen to give the input
matched conditions for each port as well as giving the desired amount of coupling to
the output ports. Directional couplers that derive their coupling from the action of
closely spaced parallel transmission lines, without any direct connection between the
lines, are the subject of the next chapter.

Consider a practical coupler with matched terminations at all ports. The
insertion loss, / dB, between the input and output ports is dependent on both the
dissipation loss and the power that is transmitted to the other ports. The level of the
coupled signal, C, at port 3 is used in the description of the coupler, e.g. a 20dB
coupler where 1% of the incident power comes out of that port. Thus, with matched
loads at ports 2 to 4

C = —10logy [M] dB

P;, at port 1 (7.1)

Any unwanted signal strength at port 4 is compared with the coupled signal strength
to give the directivity, D, as

Pyt at port 3

D = —10[0810[ (7 2)

Poyt at port 4]

If the unwanted signal is compared with the incident power at port 1, then the term
“isolation” is used.

Example 7.1

At a certain frequency, a directional coupler has equal power outputs at —3.3dB
b'elow' the incident signal level at the input. If the input V.S.W.R. is 1.2 and the
directivity is —19.7dB, calculate the dissipation loss in the coupler.
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Solution:

With an incident power to the coupler at port 1 of 1.0W, the following powers
flowing out into matched loads are obtained:

Atport1: 0.0083W, since VSWR.=12

Atport2:  0.4667W

Atport3:  0.4667TW
The power at the isolated port is 19.7dB below the power output at port 2. Thus
the power is 23.0dB below the input power level.

Atport4:  0.0050W

The total output power is 0.9487W, leaving 0.0513 W of power being dissipated
within the coupler. Hence the dissipation loss = 0.23dB.

7.2 EVEN- AND ODD-MODE ANALYSIS

A symmetrical four-port network is illustrated in Figure 7.3. This network may be
analyzed in terms of even and odd modes with respect to the plane of symmetry.

For the even mode, two signals of equal amplitude and in-phase with each other
are the inputs at the two ports reflected in the plane of symmetry, in this case at ports
1 and 4. On any line that crosses the plane of symmetry, there will be zero current
flow at the plane together with a maximum in the magnitude of the voltage. This
situation is equivalent to there being an open-circuit termination on any transmission
line as it crosses the plane of symmetry. Thus, with no power flow across the
symmetry plane, the circuit may be separated into two parts and analyzed
accordingly. For the even mode, the four-port network now appears as two identical
two-port networks. The detailed structure of the two-port network with an input
signal at port 1 will determine the reflected signal amplitude and phase at port 1 and
the transmitted signal amplitude and phase at port 2.

The odd mode is characterized by the input of two equal-amplitude signals at
ports 1 and 4 that have a phase difference of 180°. There will be zero potential along
the plane of symmetry, equivalent to a short-circuit termination across each
transmission line at this plane. As for the even mode, the four-port network may be
analyzed as two identical two-port networks.

An incident signal at port 1 with zero incident signal at port 4 may now be
considered as the superposition of equal amplitude even- and odd-mode components
with a phase relationship between them that gives a zero input signal at port 4. In
general, there will now be a reflected signal at port 1 with transmitted signals to all
the other ports. The ideal properties of a directional coupler are achieved if there is

———— (®
PLANE OF
SYMMETRY

@

@ ®

Figure 7.3 A symmetrical four-port network
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Figure 7.4 The voltages and currents for a two-port network

no reflected signal at port 1 and no transmitted signal to one of the other ports. This
may be provided, for example, if both the equivalent two-port networks for the even
and odd modes are themselves matched at their respective inputs. The direct and
coupled signals to ports 2 and 3 may now be evaluated from a phasor addition of the
transmitted signals for the two-port equivalent circuits.

The ABCD or transmission parameters for a two-port network have been
discussed in Chapter 2 and are defined in conjunction with the sign convention for the
terminal voltages and currents, illustrated in Figure 7.4, as

\2 AB)[V,
I, CD (1.3)

The reader will recall from Example 2.3 that the s; and s¢ scattering parameters
for the two-port network, normalized to Z,, are

(A-D) + (BYy— CZgp)

_I2

i T (A¥D) + (BY,+CZp (1.4)
_ 2
and % (A+D) + (BY,+CZy (1.5)

Consider again the symmetrical four-port network with the ports as illustrated in
Figure 7.3. The four-port network is analyzed in terms of two equivalent two-port
networks, one for the even and the other for the odd mode. Associated with each
mode will be the even- and odd-mode s;, s¢ parameters, denoted by s{, s{® and
sf("’), sf(") respectively. With an incident wave, a,, at port 1, there will be reflected
waves at all four ports, i.e. b; to b, inclusive. Now, in terms of the two-port
equivalent networks, the incident wave at port 1 may be reconstructed as the sum of
equal magnitude even- and odd-mode components, with their difference giving a zero
incident wave at port 4. Thus, the four reflected waves are given by

- 5© + §©
1= 2 4 (7.6a)
EET
b = 2 4 (7.6b)
) ORI
3= 2 4 (7.6¢)
(e) _ o(0)
S Si
by = 2 ] 4 (7.6d)
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Figure 7.5 A branch-line coupler

7.3 THE BRANCH-LINE COUPLER

The fundamental structure for the branch-line coupler consists of four quarter-
wavelength transmission lines that are connected together in a square format as
illustrated in Figure 7.5.

The limitations of permissible microstrip line characteristic impedances make
the branch-line coupler suitable only for tightly coupled requirements with a typical
range of 2dB to 9dB. As a directional coupler, it has a narrow bandwidth which, it
will be seen, can be increased either by having multiple sections or by using external
matching elements. The continuous connection of the microstrip line to all ports
gives d.c. coupling and, if implemented with low-loss transmission lines, is suitable
for higher power applications with little danger of breakover that may otherwise
occur at narrow gaps between adjacent transmission lines.

The even- and odd-mode analysis of the previous section will be used here to
evaluate the performance of the basic coupler. The two-port network for the odd
mode is illustrated in Figure 7.6, with the short-circuit terminations at the original
plane of symmetry.

The ABCD-parameter or transmission parameter matrix, { T ], is used to find the
overall transmission and reflection characteristics of the network, [7.1]. Let
Zseries =Za = 1/Y, and Zgyne=Zg=1/Yg. The circuit is split up into its three
parts, representing each stub and the series A/4 connecting line, as illustrated in
Figure 7.7.

SHORT-CIRCUIT
- f - PLANE

b/} A/8 /)

i
O Zy 10

,‘————~—7L/4——|

Figure 7.6 Odd-mode symmetry for the branch-line coupler
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SHORT-CIRCUIT
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O _ Zs _ ] ®
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- T . T 'va':
[Tstub ] [Tline ] [Tstub ]

Figure 7.7 Circuit segments for the ABCD-parameter analysis of the odd-mode case

For an infinitesimally short length of through line, Al, to which a A/8 short-
circuit terminated stub with input admittance —jYy is connected, and ignoring the T-
junction effects described in §5.5

1 0
[Ts‘“"] T it (1.7)
For the length of transmission line, /, between the two stubs, (2.31) gives
cosBl  jZ,sinB!
[Tline ] = |iYasinBl  cospl ] (7.8)
When this line length is a quarter-wavelength long line, with Bl = % , then
0 jZ,
[Tine] = |y, "o (79)

The complete transmission parameter matrix for the odd-mode network in
Figure 7.6 is found from the multiplication in the correct order of the individual
matrices for the network. Thus

[Todd] = [Tstub] [Tline] [Tstub] (7.10)
Substituting from (7.7) and (7.9), and evaluating, gives
1 0[O0 jZ, 1 0
[Toss] = 5% 1)l 0 ) liv (7.11)
YaZ, JZy
i(Ya- YBZZA) YsZ, (7.12)

Likewise for the even mode, with open-circuit terminated stubs that have an input
admittance of +jYg

~YgZy iZy

iA-Y22Z)) -YsZa (7.13)

[T
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Note that (A — D)odd = (A —D)even =0. Bodd = Beven and Codd = Ceven- In view
of (7.4), it follows that if BYy=CZj, then both si(°53 and s{® are zero and for the
complete four-port network b; =b, =0. In other words, the condition BYy=CZ,
ensures that with matched loads at ports 2 to 4 the four-port network is perfectly
matched looking into port 1 and that port 4 is completely isolated. Thus, for

matching and isolation, and in terms of normalized quantities

jz, = j[yA - yBZZA] (7.18)
ie. W= 1+y? (7.15)

From this equation, it is seen that the characteristic impedance of the series
connecting A/4 line must always be less than the characteristic impedance of the
external connecting transmission lines.

Again, with A=D and BYy=CZ;, and substituting for the odd mode into
(7.5), the transmission coefficient becomes

) 1 Yp — J

S = =
g z,(yp + J) % (7.16)

The transmission coefficient magnitude is unity in view of (7.15), as expected for a
lossless two-port network that is perfectly matched at the input. Retaining the
quadrant information in the signs of the real and imaginary parts, the phase angle for
the odd-mode transmission coefficient is given by

=1

I8

- -1
o = tn (1.17)

Similarly for the even-mode, the transmission coefficient magnitude is also unity and

=1
_— (7.18)

The relative phase angles for the incident and transmitted waves for the two-port
networks are illustrated in Figure 7.8. The phase angles of the even- and odd-mode
transmission coefficients are symmetrical with respect to the —90° phase shift
associated with a single quarter-wavelength line of unit characteristic impedance.
This phase angle will now be taken as the reference angle.

©®, = tan’!

INCIDENT WAVE
90
9
EVEN-MODE 1 ODD-MODE
OUTPUT \j OUTPUT
-90°
REFERENCE
PHASE

Figure 7.8 Two-port network phase relationships
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Figure 7.9 Output signal components for the branch-line coupler

Returning now to the complete four-port network, an incident wave at port 1 is
treated as the sum of two equal amplitude components of the even and odd modes
added together in-phase. The direct wave out of port 2 is the phasor sum of the two
mode components as illustrated in Figure 7.9, with an amplitude given by

Jba| = cos® ‘ (7.19)

where 6 = |©, ~90°| = |90° - ©,| . The direct wave is thus no longer unity. Now
there is power flow across the plane of symmetry.

The output at the coupled port, port 3, is given in a similar manner but being
produced by the odd-mode incident wave out-of-phase with the even-mode
component. The coupled signal amplitude

|Jbs] = sin® (7.20)
From the definition of coupling given in (7.1)
C = -10logy(sin®0) dB (7.21)

Therefore

C = -20l0g;q [—YB—]

Vi+y2 (722)
Solving for y, gives -
= —C
N (7.23)
where
c = 10-€/2 (7.24)

The results for a range of single-section branch-line couplers in a 50Q characteristic
impedance transmission line system are presented in Table 7.1. Referring to Figure
7.8, it is also seen that the outputs at ports 2 and 3 are 90° out-of-phase with each
other. For this reason, the branch-line coupler is a member of a class of couplers
known as quadrature couplers.

The power-split ratio, P, is used to express the coupling of a directional coupler
in terms of the ratio of powers to the coupled and direct ports, i.e.
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[bsl
P = —20lo = C-1
g‘°[|bz| (7.25)
For a lossless coupler, the coupling coefficient may be expressed as
¢ = == where p=10"7/20
Vit p? (7.26)

Table 7.1 Line impedances for a single-section branch-line coupler, designed for 50Q
external connecting impedances

Coupling y Y, Zshunt Zseries
C,dB B A Q Q
2 1.308 1.646 38.24 30.37
3 1.002 1.416 49.88 35.31
3.01 1.000 1.414 50.00 35.36
4 0.813 1.289 61.48 38.79
5 0.680 1.209 73.52 41.35
6 0.579 1.156 86.33 43.27
7 0.499 1.118 100.15 44.73
8 0.434 1.090 115.21 45.87
9 0.380 1.070 131.75 46.75
10 0.333 1.054 150.00 47.43

There are advantages in using the power-split ratio when directional couplers are
being used in a network to provide appropriate power ratios at several output ports,
The relationship between the power-split ratio and the coupling ratio is illustrated in
Figure 7.10. The asymptote, representing a plot of the coupling ratio on both axes,
clearly shows how the power-split ratio approaches the coupling ratio for high values.

The behavior of the branch-line coupler when the input is applied to another
port can be deduced in a straightforward manner from knowledge of what happens
with an input to port 1. It is readily observed that every port has an identical
environment, with two lines of different characteristic impedances branching from it.
The higher impedance line leads to the isolated port. -

10

(=]
|

Power-split ratio, dB
o+
1

2 3 4 5 6 7 8 9 10
Coupling, dB

Figure 7.10 Power-split ratio and coupling for an ideal directional coupler

1
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At this point, it is worth remarking that for any type of coupler, there is no
fundamental difference between the through and coupled ports. Both are output ports,
but it is usual to take the port with the smaller amount of power as the coupled port.

Example 7.2
Calculate the power-split ratio in dB for a 6.02dB directional coupler.
Solution:
From (7.26)
p = C
V1 - ¢?

For a coupler with C = 6.02dB, then from (7.24) € =0.50, giving p=0.577 and a
power-split ratio, P = 4.77dB.

Example 7.3

A single-section 3.01dB branch-line coupler has shunt and series line impedances of
50.0 and 35.36Q respectively. To observe one possible effect of manufacturing
tolerances, consider the case where the series line impedance is 37.0Q while all other
aspects of the coupler may be considered to be unaltered. Calculate the input
V.8.W.R,, coupling and directivity for this modified coupler.

Solution:

'I.'he f:ircuit segments for ABCD-parameter analysis are shown in Figure 7.7. The
line immittances are Yy =0.028 and Z, =37.0Q. From (7.12) and (7.13)

~074 370

[Teven] = |jo01223 -0.74

] 074 j37.0
an [Todd] 001223 074

(A-D) + (BYy-CZp)
(A+D) + (BYy+ CZy

_ i(074-06114) _ .
148 +j1.3514 0.0642 /47.6°

0.0642 /-47.6°

Each mode scattering parameter is for a unit incident wave. Now, for the
complete coupler with half the incident wave at port 1 associated with each of the
modes, from (7.6a) with a; = 1

si(e) + si(<>)

by = T = - = 00433

From (7.4), s© =

while 5©
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, . 1+ |G|
ie. input VSWR. = ——+ = 1.09
1= |Gl
At the coupled port, from (7.6¢c)
b - Sf(e)_sr(o)
3 - 2
e by= |TD i%Y cz ~|@a+D :3Y+CZ)
(A+D)+( ot 0) even (A+D)+(BYy 0/ |odd
giving by = 1 1 = 0.737

148 +j1.3514  -1.48+j1.3514

Hence, the coupled signal level = -2.65dB.

From (7.6d), the reflected wave at the isolated port is given by

5 - 5©
2

representing a power level of —26.48 dB with respect to the input power. Now,
with a coupled signal of —2.65dB, the directivity of this branch-line coupler is
23.8dB.

by = = j0.0474

7.4 THE BRANCH-LINE COUPLER
— with improved coupling performance

The single-section branch-line coupler was designed so that, when it was inserted into
a matched system of transmission lines, a perfect match was provided at each port at
the design frequency. This was achieved by maintaining a match for both the even-
and odd-mode two-port equivalent networks. However, it is important to consider the
performance of the coupler as the frequency of operation is varied. Ideally, the input
should remain as near to a perfect match for both modes over as wide a frequency
band as possible. How well this is achieved may be seen with the aid of the
transformations through the two-port networks at the design frequency, f;, described
in conjunction with Figure 7.11 using the line parameters for a 3dB branch-line
coupler.

The intermediate admittances are labeled at the respective planes commencing
at port 2, which is terminated in a matched load, through to the input at port 1.
Consider the case of the even mode with the A/8 open-circuit terminated parallel-stub
transmission lines. Each admittance is highlighted by a black dot on the expanded
central section of a Smith Chart, Figure 7.11b. Commencing from the matched load
termination, y;, the stub susceptance of +j1.0, normalized to a 0.02S characteristic
admittance (502 characteristic impedance), is added to give ¥, Renormalizing to
35.36Q wansforms the normalized admittance to ¥;- Note that this admittance is
situated on the line that passes through the center of the chart and perpendicular to the

i



162 Chapter7
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® | so0a 35.36Q \4 500 | @

(a) Reference planes for the two-port network

(b) the even mode (c) the odd mode

Figure 7.11 The transformation of admittance through even- and odd-mode two-port
networks

zero susceptance axis. As will be seen when the odd mode is considered, this is
necessary if both the even- and odd-mode equivalent two-port networks are to be
matched. The A/4 line transforms the admittance to Y4» While renormalization back to
the 50€2 characteristic impedance line gives the admittance, ¥s- At this plane, the stub
susceptance of +j1.0 completes the perfect match, Yo

For the odd mode, with the short-circuit terminated stub, the normalized stub
admittance is ~j1.0. Thus, using the same order of admittance points, the matching
process is illustrated for the odd-mode case in Figure 7.11c.

The perfect match at the design frequency will not be maintained as the
frequency changes. Let the frequency be reduced by 10% to 0.9fy. Each
transmission line, with its fixed physical length, now has an electrical length that is
reduced by 10%. Thus the normalized input admittance of the short-circuit
terminated transmission line will become —j1.171, while that with the open-circuit
termination will become +j0.854. The series line that was a quarter-wavelength at
the design frequency is now reduced, in effect, to 0.225A. With these changes, the
even- and odd-mode admittance plots at 0.9 f; are illustrated in Figure 7.12.
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(b) the odd mode
Figure 7.12 Admittance transformations at 0.9f,

(a) the even mode

The input V.S.W.R. is evaluated from the input reflection coefficient
Si(e) + Si(0)
lin = =5 (1.27)

At 0.9 fy, the individual mode reflection coefficients from Figure 7.12 are
s = 0223/-25.4°, $© = 0298/-111.6°
giving
[Gal = 0192  and V.S.WR. = 1475

For a minimum V.S.W.R. at the input, it is not necessary for both even and o.dd
components to be minimum, provided that the two components are out-of-phase with

each other.
OPEN CIRCUITS
[ J - \I
o} :
L ] — J

. . . R all
Figure 7.13 The 3.01dB branch-line coupler with four external matching circuits and
linge impedances of Z unless otherwise specified, adapted from Riblet [7.2] (© 1978, IEEE)

t
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Additional networks, external to the ports of the two-port network, may be
added without influencing the center frequency input impedance at each port for both
modes, if at this frequency the additional networks appear as open circuits across the
lines. An open-circuit terminated parallel-stub line with a 50Q characteristic
impedance and A/2 long exhibits some of the necessary circuit requirements. This
line has an infinite input impedance for both modes and may, in principle, be
connected at any plane along the transmission line. However, an improved
performance is obtained when the stub is connected at A/4 from each of the shunt
arms of the branch-line coupler, as illustrated in Figure 7.13. A compact structure is
achieved by folding the A/2 stubs.

For this network at 0.9, (7.27) gives

_ 0.244/15.2° + 0.015/105.9°
Tn = 2 (7.28)
The resulting V.S.W.R. of 1.278 is an improvement over the value obtained earlier.

It will be seen later in this section that, by correctly selecting the characteristic
impedances, precise lengths of the stubs and their positions relative to each port,
[7.2], improved broadband matching may be obtained. A theoretical comparison for
a 3dB coupler is presented in Figure 7.14. Curve (a) shows the performance of the
basic branch-line coupler and (b) that of the same coupler with A/2 open-circuit
terminated stubs placed at A/4 from each port.

Instead of having a perfect match at the design frequency, fy, it is possible to
match at two frequencies on either side of f;. The matching networks used are
illustrated in Figure 7.15a. They are connected in tandem with each port. For a
microstrip line it is more practical to use the open-circuit terminated stub transmission
line, Figure 7.15b. With 6 =xt/2, a line of length 26 and normalized characteristic
admittance y,/2 with an open-circuit termination will have approximately the same
input admittance as the short-circuit terminated line of length, 6, and admittance, y,.
The A/4 sections of the branch-line coupler also have the new electrical length, 0.

From the results presented by Riblet {7.2], if Af/fj is the required frequency

1 T i T

i
0.9 1.0 1.1
normalized frequency

Figure 7.14 The input VSWR for a 3.01dB improved branch-line coupler, showing (a) the
basic branch-line coupler, (b) the coupler shown in Figure 7.13, and (c) using broadband
matching elements of Figure 7.15
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(a) Short—circuit stub {b) Open—circuit stub

Figure 7.15 Broadband matching elements, attached to all ports of the hybrid coupler, from
Riblet [7.2] (© 1978, IEEE)

separation for the two matched frequencies, then 8 is given approximately by

al Af
8 = cos 1[-‘]7 cos [‘72:‘(1 + 2%, ]] (7.29)

If{=y,/y, and £ is a free parameter that is chosen such that EL = 1in order to give a
realizable range of microstrip line admittances, then the two equations that must be
satisfied are

sin0 2 2n sin@

snu 1 0 = ————

v2 +(1 +1/5)* cos PN (730)
sin@

== (14 1/

y 1+ 15

sin@ — cos’ = - [§+ 1 ]2
: N Y2 5ing -1 (731)
These two equations are symmetrical in 6 and (180° - 6), giving two soh{tions
where the design frequency, f;, is the lower or upper matched frequency respecnvely.
The particular case described in detail earlier and plotted as curve (b) in Figure 7.14 is
given if Af/fy=0, i.e. the matched condition is maintained at fo . However, wh«?reas
50Q characteristic impedance lines were used, an improved performance as predicted
by (7.29), (7.30) and (7.31) is given if the line parameters are altered to y, = 1.026
(48.73Q) and y,=1.195 (41.84Q) respectively. In order to have the' p?rfec'tly
matched frequencies on either side of a central design frequency, the transmission hqe
lengths become a quarter- or half-wavelength long at the center.frequency. With this
change, the V.S.W.R. at 0.9 and 1.1 xfy becomes 1.25; a small improvement, as seen
by comparing curves (b) and (c) in Figure 7.14.
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Figure 7.16 A symmetrical three-branch 3dB coupl i
75 e o8, o oupler, based on data from Levy and Lind

7.5 THE BRANCH-LINE COUPLER
— with multiple sections

Multiple-section branch-line couplers appear to offer the desirable coupler
characteristics of constant coupling, low input V.S.W.R. and high isolation over a
wid.er bandwidth than the single-section (two-branch) coupler. Levy and Lind [7.3}
derive the theory for the synthesis of multiple-section couplers by considering a
.frequt‘ancy dependent function that represents both the input reflection coefficient and
isolation. Minimizing the function with maximally-flat or Chebyshev characteristics
leads to the required line impedances for each of the coupler’s quarter-wave lines.
) Further design details are not given here because, from the tables of line
impedances given in [7.3] for couplers having from 3 to 9 branches, it is seen that
almost all couplers would be unachievable using microstrip transmission line circuits
as a result of the high impedance shunt lines that are required. Limiting the
characteristic impedance of all lines to the range of 25 to 150Q, maximally-flat
coupler designs are restricted to the range of 2 to 4dB coupling at the center
_frequency. A 3-branch coupler with 3dB coupling at the center frequency is
illustrated in Figure 7.16, where all the line lengths are nominally A/4 at the center
frequency.

Broadband designs for multiple-branch 3dB couplers that do not require
excessively high line impedances have been described by Muraguchi et al. [7.4]. The

50Q 52.0Q 5490

@1 1®

1339Q 136.1Q

@ 0]

|
SYMMETRY
PLANE

Figure 7.17 An optimized 3dB coupler, based i
(© 1585 BEE) P pler, based on Example 4.9 of Muraguchi et al. [7.4]
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impedance problem is solved by applying a computer-aided design that limits the
maximum allowable line impedances. A penalty function, in terms of all the line
impedances, is summed at intervals across the desired frequency band. The function
for a 3dB coupler has terms of the form |s;;]2, |sy]2 = 0.5, |s3;]2-0.5 and |s]?
and their sum across the frequency band is minimized by an appropriate search
through possible line impedances. From their results, a four-branch 3dB coupler with
the impedance values rounded to one decimal place is illustrated in Figure 7.17.

7.6 THE HYBRID-RING COUPLER

7.6.1 Introduction
The branch-line coupler described in the previous section may be constructed with the
series and shunt transmission lines in a circular shape. However, this should not be
confused with the hybrid-ring coupler that has A/4 and 3A/4 interconnecting line
lengths as illustrated in Figure 7.18. The hybrid-ring coupler is also known as the
"rat-race” coupler. Unlike the 3dB branch-line coupler where the phase of the
coupled signals ideally differs by 90°, for the 3dB hybrid-ring coupler the output
signal pairs are either in-phase or out-of-phase depending upon which port of the
coupler is used for the input. For this reason the "rat-race” coupler is closer to the
action of an ideal hybrid, Figure 7.1, and the waveguide junction "magic tee” than the
branch-line hybrid. The facility of having two equal amplitude in-phase signals that
are isolated from each other, and the improved bandwidth performance of this coupler
compared with the single-section branch-line coupler, makes it an ideal choice for a
matched power splitter in an antenna feed system (Reed and Wheeler {7.11]).

It will be noticed that there is a plane of symmetry in Figure 7.18, which will
allow the four-port network to be split into equivalent two-port networks with even-
and odd-mode symmetry, as was done for the branch-line coupler. With the isolated

@ soLateD

IN-PHASE
OUTPUT

— — SYMMETRY PLANE

IN-PHASE
ouTPUT

Figure 7.18 The hybrid-ring coupler
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port still being designated as port 4, the port arrangement with respect to the plane of
symmetry differs from that in Figures 7.3 and 7.5 by having ports 3 and 4
interchanged. In Figure 7.3, the isolated port 4 was at the input end of the structure,
whereas in Figure 7.18 it is port 3 that has that position. It will be seen in a later
analysis that input matching is achieved not with 5 = 5 =0, as for the branch-line
coupler, but with @ +5 =0. This also means that the resultant reflection
coefficient at port 3 is not zero but is equal to s — 5, representing a transmitted
signal flowing out of that port.

7.6.2 A qualitative description

The following simplified view of a 3dB hybrid-ring coupler leads to an understanding
of which port is isolated as well as giving the correct characteristic impedance for the
circular connecting line. Consider an input signal at port 1 that splits into two equal
waves traveling in opposite directions around the ring. At port 2, the two waves have
traveled distances A/4 and 5A/4 respectively and arrive at port 2 in-phase with each
other. The same occurs at port 3, making the signal at port 3 in-phase with that at
port 2. However, at port 4 the two waves that have traveled distances of A/2 and A,
arrive out-of-phase and will cancel. Thus port 4 is isolated from port 1. On the ring
between ports 2 and 3 via port 4, there will be a standing wave present with zero
electric field at port 4. The transmission line may be short circuited at this plane.
This short circuit, through the A/4 and 3A/4 lengths of line, presents an open-circuit
impedance at each of the junctions to the ring of ports 2 and 3 respectively. With
each port connected into a matched 50C2 line, the connections from ports 2 and 3
should each appear as a 100Q load at port 1 so that their parallel combination
presents a matched load to the input. The 100Q2 impedance level is provided by
transforming each 50Q load of the coupled output ports through a 70.7Q
characteristic impedance quarter-wave transformer. A similar argument when port 3
is taken as the input to the hybrid-ring coupler leads to the complete ring being found
to have a uniform 70.7€Q characteristic impedance. Further analysis will show that
for an input wave at any port there will be equal power split to adjacent ports, either
in-phase or out-of-phase, with isolation at the remaining port.

7.6.3 A complete analysis

The two-port network for even- and odd-mode analysis is illustrated in Figure 7.19.
The characteristic impedance of the feed line at each port is assumed to be 50Q2 while
the characteristic impedances of appropriate sections of the ring become Zg,, and
Zgerigs. For the even and odd modes, the stub lines are terminated with open and
short circuits respectively. It will be noticed that the only difference between the
two-port equivalent circuits of branch-line and hybrid-ring couplers is the length of
the second stub, being A/8 for the branch-line coupler but 3A/8 in this case. The
ABCD-matrix of the two-port equivalent circuit for the hybrid-ring coupler is now
given by

SR CN T R
[ .0 &0 E-slub 0 T-lme —8--slub (71.32)
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Figure 7.19 The hybrid-ring two-port equivalent network
Thus
[ 1 0 0 1 Zseries 1
Teo ] = . . .
’ J J - J
+ 1 0 ¥
Zgp Zseries Zsnub
Zseries .
+ Zsub JZgeries
stu
j [ 1 Zserics] — Zseries
Zgeries Zsztub Zstub

(7.33)

(7.34)

In order to evaluate s; and s¢ via (7.4) and (7.5), certain symmetries inherent in

(7.34) are to be noted, namely
(A +D)eyen =

(A ~D)eyen =
Beven =

CCVCH -
so that

Si(c.o)

and ' sf(e) =

(A+D)ogg = O

~(A-Dlogd = 2Aeven = ~2Aodd
Bogq = B

Codd = C

+2Aeven + (BYy—CZg)
BY,+CZ,

O - 2
f BY,+CZ,

(7.352)
(7.35b)
(7.35¢)
(7.35d)

(736)

(7.37)

Returning now to the four-port network, the reflected waves out of the four
ports for an incident wave at port 1 are

5 + 5O
bl = T al

(7.382)
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_ {9 + {0
b = =3 a (7.38b)
b = 5@ - si(O) .
37 2 ! (7.38¢c)
by = ————S‘Se) . i a
4 2 1 (7.38d)

This equation differs from (7.6) because of the interchange of ports 3 and 4, as
explained earlier. In view of the values for si and s just derived as well as the
symmetry relations (7.35), the reflected power wave expressions in (7.38) simplify to

by = (BYy - CZp) N
BY,+CZ, (7.39a)
b = WEC_ZE“‘ (7.39b)
b3 - BZACVCXI 31
Yo+CZ, (7.39c)
by =0 (7.39d)

Isolation at port 4 is thus always achieved, i.e. for all values of Zgeries and Zgy, ), but
it is necessary that BYy = C Z,y for input matching, giving

bl = b4 =0 (740)
1
= —=—a
b BY, ‘! (7.41)
A
and by = =,
3 BY, ! (7.42)
In terms of normalized quantities and substituting from (7.34)
b2 = —_‘L‘ al
Zgeries (7.43)
b3 = -J a)
Zstub (7.44)
and the condition BY, = C Z, becomes
2l + + =1
Zseries Zstub (7.45)

In view of (7.43) and (7.44), it will be recognized that (7.45) simply states that
the power out of ports 2 and 3 equals the power into port 1. For an equal power split
between the two output ports, Zseries = Zstub = V2, giving 70.7Q for the characteristic
impedance of the ring in a 50Q system.

Unequal power division may be obtained by alternating the characteristic

™

ARl
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Figure 7.20 Normalized line impedances for a hybrid-ring coupler with an output power-
split ratio, P

impedances of the ring lines between the two different values, as shown by Pon [7.5].
The output signals at ports 2 and 3 retain the same phase relationship even for an
unequal power split. When inputs are applied to other ports, an identical analysis
reveals that each port is itself matched. Thus the hybrid-ring coupler, even with
unequal power split, satisfies the conditions for an ideal directional coupler as
outlined in §7.1. From (7.25)

[bs]?

[b, [? (7.46)
Substituting for b, and by, and using (7.45), gives

P = —10logy,

(7.47)
The two normalized line impedances are plotted as a function of P in Figure 7.20.

' :
Zoup = {1+10719) and z oo = [1+10°P10
stub series

Example 7.4

The hybrid-ring coupler, illustrated schematically in Figure 7.21, has power fed into
port 1 and twice the power out from port 3 compared with that from port 2. If perfect
matching and isolation are assumed in a 50Q system, calculate the line impedance
around the ring.

Solution:

The coupler has a power-split ratic of 3.01dB. However, since the coupled
power out from port 3 is greater than the transmitted power to port 2, the power-
split ratio is actually ~3.01dB and in effect gives a directional coupler with
C =1.76dB. From (7.47)

Zgup = 1.225 x 50
and Zeries = 1.732 x 50

61.2Q
86.6Q2
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Figure 7.21 Line impedances of the hybrid-ring coupler for Example 7.4

Noting the position of the plane of symmetry in Figure 7.21, Z, is the stub
impedance and Zj, is the series impedance.

7.7 THE HYBRID-RING COUPLER
— with modified ring impedances

With an upper limit on line characteristic impedance of about 150Q for many
microstrip transmission lines, the hybrid-ring coupler is limited to typical power-split
ratios from O to 9dB. In the modified ring structure, analyzed by Agrawal and
Mikucki [7.6], the 3A/4 section is divided into three separate A/4 sections of
transmission line, as illustrated in Figure 7.22. Increased power-split ratios may now
be obtained while the line impedances remain below 1500, The output signals from
ports 2 and 3 remain in-phase for the input at port 1 and out-of-phase for the input at
port 4. The improved performance is, however, at the expense of the input match of
each port and the isolation between ports 1 and 4, and ports 2 and 3.

® auastisoLaTed

Z,
IN-PHASE
OUTPUT
-- — ~ SYMMETRY PLANE
INPUT

IN-PHASE
ouUTPUT

Figure 7.22 The modified hybrid-ring coupler with alternating line impedances around the
ring
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Modified ring impedances of Z; = 118.6 Q and Z,=52.1Q in a 50Q system
give a power-split ratio of 10.0dB at the center frequency, with most of the power
going to port 2. This modified hybrid-ring coupler has a theoretical input
V.5.W.R. =1.072 and directivity (port 4 with respect to port 3) = 8.5dB. These line
impedances satisfy the requirements [7.6] that

P = 20/ 2Z,
I FATESA) (7.48)
and for a good input V.S.W.R. condition, in terms of normalized quantities
1 1 _ 1
3t 3=
Z{ z) Z (7.49)

In the conventional hybrid-ring coupler, an impedance Z,=118.6Q (with
Z,=55.1Q) would only give a power-split ratio of 6.6dB.

EXERCISES

7.1 Calculate the level of the transmitted and coupled signals from a directional coupler that has a
total dissipation loss of 0.5dB, while retaining a 0dB power-split ratio. The input retum loss
and directivity for the coupler are both 20dB.

72 In the first stage of a three-way equal power-split coupler, an ideal directional coupler is
required with a power-split ratio of 3.01dB, i.e. the transmitted signal at port 2 has twice the
power of the coupled port. Calculate (i) the coupling, CdB required, and (ii) the line
impedances for a two-branch branch-line coupler.

7.3 In the design of a lossless 2.0dB branch-line coupler, the quarter-wave line impedances are
38.24 and 30.374, see Table 7.1. Retaining the 38.242 line but changing the 30.37Q line to
59.30Q, gives the necessary line impedance values for a 3.81dB coupler. Sketch the two
coupler designs, label the ports appropriately and comment on the similarities and/or
differences in the performance of the two designs.

74  Calculate the input V.S.W.R. in a 50Q system for a nominal 3dB hybrid-ring coupler, if the
ring impedance is 75Q instead of the designed value of 70.7Q2. Is a voltage maximum or
minimum expected at the input plane to the ring?

7.5 Calculate the impedance parameters for a hybrid-ring coupler, 10 be used in a 50Q system, that
has in-phase output signals with a 0.5dB power-split ratio.

7.6 Consider the three-branch directional coupler that is illustrated in Figure 7.16. Using ABCD-
parameter analysis for the even and odd modes, calculate (i) the input V.S.W.R., (ii) the
coupled signal level, and (iii) the directivity at 0.9 xf, and fo, where f; is the center frequency
for the coupler.

7.7 A 3dB branch-line coupler with Zgeries = Z /Y2 and Zgpyne = Zq in Figure 7.5 is driven by two
inputs at ports 1 and 4 respectively. Identical load impedances, Z, , are connected to the two
output ports, 2 and 3, and produce the identical impedances Z;, looking into the inputs at 1 and
4. In all cases, Z;j and Z_ are evaluated at the junctions of the connecting lines with the hybrid
proper. Zjy is a function not only of Z; but also depends on whether the input excitation is of
the even- or odd-mode type. Show that

Ziy, = jkZ, when Z =
and Zin = -jkZ, when Z;, =0
where k = +1 for even-mode excitation and k = —1 for odd-mode excitation.

7.8 Express the insertion loss /, coupling C, and directivity D of the directional coupler in Figure
7.2 in terms of the scattering parameters of the four-port network.

i
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Parallel-coupled lines
and directional
couplers

8.1 INTRODUCTION

The performance of hybrid-line couplers was analyzed in Chapter 7 in terms of the
even- and odd-mode properties of the transmission line structures. For the hybrid-
line couplers, there were transmission line connections between all the ports of the
network. In this chapter, analysis in terms of the even and odd modes will again be
considered, but this time for a network where there is continuous coupling — but no
d.c. connection — between two transmission lines that are parallel and in close
proximity to each other. Figure 8.1 illustrates a typical pair of parallel-coupled
microstrip lines producing a directional coupler, with the coupling taking place over
an electrical length .

The microstrip lines are in the one plane and parallel to each other; for this
reason this circuit is also described as an edge-coupled circuit. The separation
between the line is s and the width of the lines in the coupling region is w. In
general, this width is different from the width of the connecting lines at the ports,
which will be denoted by w®?, for a 50Q characteristic impedance system.

Following the convention that port 1 is the input port with ports 2, 3 and 4 being
the direct, coupled and isolated ports respectively, it is seen from the labeling of the

Figure 8.1 The parallel-coupled lines of an edge-coupled directional coupler
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ports in Figure 8.1 that a solution with the coupled signal in the opposite direction to

that in a branch-line coupler is anticipated.

For the development of the basic coupled line theory [8.1,8.2], it will be
necessary to make three assumptions:

i) that the quasi-static TEM-mode of operation holds and voltage and current are
thus meaningful quantities on the lines,

ii) that the transmission lines have the same g4 for both the even and odd modes.
This is equivalent to the lines being immersed in a uniformly filled dielectric
space with relative permittivity e.gr. With this assumption, the even and odd
modes will have the same phase velocity. In practice, the velocities for the two
modes will be slightly different. This will produce some degradation in the
performance of the coupler.

ii) that the transmission lines possess an appropriate plane of symmetry,

8.2 EVEN- AND ODD-MODE ANALYSIS

The two coupled lines make a four-port device. The total voltages that result when
port 1 is excited by an input signal are shown in Figure 8.2a. If the two ports at one
end of the structure are driven with the same phase and magnitude voltages, the
even-mode configuration as illustrated in Figure 8.2b results, with four voltages and
four currents at the ports. These variables are distinguished by the superscript "(e)".
For the odd mode, Figure 8.2c, port 3 is driven antiphase to port 1 and the odd-mode
voltages and currents are denoted by the superscript "(0)".
The total voltages at each port are given by superposition of the even- and odd-

mode voltages. Thus

Vi = Vi@ + v V, = V@ + v

V; = V® - y©@ Vg = VO - v (8.1)

The transverse electric field patterns for the even and odd modes for a microstrip
line are illustrated in Figure 8.3. As was the case for the single microstrip line, rather
than evaluating the inductance per unit length for each mode, each of the even- and
odd-mode impedances, Zg, and Zy, , is found from both air-filled and dielectric-filled
line capacitances for the respective mode. The mode impedances represent the
propagating wave voltage/current ratio on each line when the pair of coupled lines
have been appropriately excited.

Consider the line with a characteristic impedance Zy, as illustrated in Figure
8.4. The load and source impedances give voltage reflection coefficients, I and I
respectively, at the ends of the transmission line. In Exercise 2.1 1, the forward and
reverse traveling waves were considered for this case, giving the voltages at each end
of the line as

voo Yl Ts- I e20
) 1 - T % (82)
)1 -6
and Vo = —Vi (1= T5X +rL.):
2 | 1-TIgred?® (8.3)
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(a)
TOTAI
VOLTAGES

(b)
EVEN-MODE
VOLTAGES

(©)
ODD-MODE
VOLTAGES

Figure 8.2 Parameters for coupled transmission lines. (a) The total voltages that result
when port 1 is excited by an input signal. The voltages in (a) are decomposed into two sets,
(b) the even-mode voltages, and (c) the odd-mode voltages.

When Iy =T} =T, say, (8.2) and (8.3) become

voo %, I(1-e329)
VT | T2 (8.4)
Vg [a-TYHed®
and Yo = T (8.5)
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VIR

h

CUAN TN =

ODD-MODE SYMMETRY

Figure 8.3 The electric fields for parallel-coupled microstrip transmission lines

This formulation of the line voltages is also applicable to coupled lines in terms
of the even and odd modes on the lines. For the even mode in Figure 8.2b, the load
and source impedances are Zg and the characteristic impedance Zg, so that

Zy=Zpe
ZO + Zoe (86)
Further, the Vs in Figure 8.4 becomes the Vs/2 in Figures 8.2b and c, giving

r - I, =

Vs (1 - 7329
Vi® = -
4| 1-12ed (8.7)
Vs [(1~T2)ei®
and Ve = =S (—cz)—eze
4 |1 -1t (8.8)
Likewise, for the odd mode in Figure 8.2¢
Zo—Zy,
r 5, = =2 -0
o ZO+ZOO (8.9)
\Y/ (1 - e7428)
ivin v - S0 )
giving i 4| T 1-12ei® (8.10)
Vo [(1 -T2)e®
and VO = _S[(_.oz_”iy
4 |1 -r27 (8.11)
Z voT Z, ()
0 —

Figure 8.4 Parameters for a terminated transmission line
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Note that 6 in (8.10) and (8.11) is identical to that in (8.7) and (8.8), by virtue of the
assumption that the even- and odd-mode velocities are equal.

Input match condition
Apply an input signal to port 1 only. The input voltage V; = V{® + V;©®, 50 that

Vs i ¥ I
Vi = =2 1+1-(1-¢20 S ~
174 (1-¢7%) 1-T2e¥®  1-12e9% ] (3.12)
The condition for a matched input at port 1 in Figure 8.2ais V; = V/2, given when
re o
- + - = 0 .
1-r2ed® 7 | _ 2% (8.13)

To satisfy this condition in a frequency independent manner, i.e. for all 8, I =-T,is
obviously sufficient, but it is left to show in Exercise 8.9 that it is also necessary.
Now, from (8.6) and (8.9)

fe=To = 720°% (8.14)

ie. ZoeZoo = 23 (8.15)

Isolation
The voltage at port 4, where good isolation is required, is given by V& — V{?,
yielding

Vs {(1 -THed® @ —ro?)e'i"]
V4 =

4 {1-T29® | -2 (8.16)
Again, I, = —T}, is clearly sufficient, and may likewise be shown to be necessary, to
make V, =0.

The coupled port
At port 3, the coupled port

V = -\é 1 - re(l _ e—j2e) bt FO(I _ e_jze)
3Ty 1 - T2 1 - r2ed?® (8.17)
With T, =T,
v = s [L(P-T)
3 2 | e~ r2e® (8.18)
iving v o Y 2jT, sin® )
& 3 2 1(1~T2)cosd + jsind(1 + T2) (8.19)
_ Vs [ 2L jsind
2 {1+12 1-12 o
5 |cos6 + jsin
R o (8.20)
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Now it is readily shown from (8.6) and (8.15) that

2T, Zo ~Z
~—S = ZE_Z00 o ¢ by definition
1+ Zoe +Zgy (821)

where ¢ will appear later as a coupling coefficient, consistent with its use in §7.3. It
is simple to show that

- 3]
1-¢ = 5
T+l (822)
Vs [ jCsind ]
Thus Ve, = —
37 2 [V - 2eosd + jsing | (823
Transmission
With the same condition I, = - T, the transmitted signal at port 2 may be similarly
found as
VvV, = VS Nl — c2
2 VI - c2cosh + jsin® (824)

Summary and discussion

When V; is set as 2V for each of the two modes, a unit input voltage at port 1 results
and the following relationships are found, namely

Vl = 1
v - Vi-¢?
2 V1 = c2cos8 + jsin®
Vi = jCsinb
3 V1 - c2cos® + jsin6
Vy =0 (8.25)

The maximum coupling from port 1 to port 3 occurs when the coupling length
is one quarter-wavelength, i.e. © = ©/2. Under these conditions

Vl = l

V, = —V1 - ¢

V3 = C

Vs =0 (8.26)

To summarize, with the assumptions that have been previously stated and
including condition (8.15), the following points should be noted with respect to (8.25)
and (8.26):

i) Port 4 always has zero output, irrespective of the electrical length of the coupling
region. In practical circuits, a major cause of the poor isolation may be unequal
even- and odd-mode phase velocities.

ii) The input at each port is matched to the feed line characteristic impedance, Zy,
again irrespective of the electrical length of the coupling region.
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iii) The total output power equals the input power (see Example 8.1).

iv) The maximum coupling to port 2 occurs at the frequency that gives a quarter-
wave coupling length. This will be the mid-band frequency. Because of this
property, these couplers are also known as quarter-wave couplers.

v) At this maximum coupling frequency, the through-line voltage V, is 90° out of
phase with the coupled line voltage Vs, i.e. this coupler may be described as a
quadrature coupler. The coupled voltage V; is in phase with V; and thus V, lags
V) by 90°, the latter phase difference being identical to the electrical length of the
coupling region.

vi) At frequencies other than the maximum coupling frequency, the ideal frequency
response is found by evaluating the terms |V,(8)| and | V;(0)], remembering
that 8 is a function of frequency.

The coupling for a directional coupler is generally expressed in dB, i.e.
coupling, C (dB) = —20logo(c) (8.27)

Thus, it follows from (8.21) that

_ 1+cl? _ 1+ 10°C20)%
Zoe = Zo (1 c] =2 [1 — 1076120 (8.28)
T 1 - 107920
and ZOO = Zo + Zoe = ZO []_:-W (829)

The edge-coupled coupler may also have been analyzed in terms of the
scattering parameters of the equivalent two-port networks as were the branch-line and
hybrid-ring couplers in the previous chapter. For this alternative analysis, the
required even- and odd-mode s-parameters can be deduced from the solution to
Exercise 2.1(v).

Example 8.1

For a lossless directional coupler, there is a balance between the input and output
powers. Verify this at the mid-band frequency.

Solution:

Assuming equal even- and odd-mode phase velocities, then, in the even- and
odd-mode analysis, (8.26) has been obtained at the mid-band frequency for a .
quarter-wave parallel-line directional coupler. It is assumed that the coupler is
matched to input lines with equal characteristic impedances, Z,. With the only
input signal being applied to port 1, and there being no reflected wave at that port,
then

V11225
(1V2]2+ |32 + | V4] D) 25"
Assuming, with no loss of generality, that V; = 1, then

output power = (|-jV1-¢c2|? + [c|? + 0) 25! = Z5!

= input power.

the input power
and the output power
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8.3 COUPLED-LINE PARAMETERS

The quasi-static analysis of coupled microstrip transmission lines gives the
capacitance in terms of the physical parameters w/h, s/h and the substrate
permittivity, which in turn leads to the even- and odd-mode impedances, Zg and
Zgo» and the effective relative permittivity for each mode. This latter quantity relates
the mode phase velocities to the phase velocity in free space by

veo - ¢

phase = &9 (830)

For the quasi-static TEM-mode propagation, Bryant and Weiss [8.4] produced a
rigorous theoretical analysis using a Green’s function that expressed the discontinuity
of the electric fields at the dielectric-air interface (see Appendix 2). Their published
results for €, = 1, 9 and 16 have served as a benchmark against which later
derivations have been compared. For each substrate permittivity, a graphical
presentation of results gives the mode impedances as a function of w/h, with s/h as a
parameter. Akhtarzad et al. {8.5] recognized the need for an easier determination of
w/h and s/h when the mode impedances are known, while Ros [8.6] presented a chart
for €, = 9.7 that had the mode impedances along the two axes with both the w/h and
s/h contours drawn for interpolation.

Jansen {8.7] extended these results for coupled microstrip transmission lines
with a rigorous hybrid-mode solution, that gave the frequency dependence of the
derived quantities. From this work, the detailed empirical formulae of Kirschning
and Jansen {8.8] were later derived, giving Z, , Z( and eé%(’) as functions, not only
of the line parameters w/h, s/h and ¢, but also of frequency. The zero-frequency
equations from [8.8] are presented in Appendix 4, together with sample data values.
Using the equations of [8.8], Zq. and Zg, are plotted in Figure 8.5 at low frequencies
for €, = 2.5 and 10.0.

90 90 -]
80 80
Zoe, Q Zoer Q@
70 70
60 -1 60 -1
50 50
40 40
20

Zpo»

Figure 8.5 The even- and odd-mode impedances for coupled microstrip transmission lines,
including the condition Zge Zg, = (50)2, (dotted curve)
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For directional couplers that are to be matched to the input feed lines, it was
seen in (8.15) that only certain combinations of Zg, and Zg, would be required. As
the majority of systems are designed for 50Q characteristic impedance
interconnections, the required condition (8.15) is also plotted in Figure 8.5.

1.0
W
0G0
0.9
0.6
0.4+
log,o(s/h)
0.2+ 0.8
0.0+
—0.2 F
J - 0.7
-0.4- &r
150 ——
] 10.0 ——
80—
-0.61 6.0——
4.0
J 3.0
2.5
~0.8 2.0
- Coupling coefficient, C dB
35 30 20 15
-1.0 A S VPP MOV ER SRR SRS S S S S SE S
0.0 0.05 0.1 0.15 0.2 0.25 0.3

Voltage coupling coefficient, ¢

Figure 8.6 The line separation and width for a single section of an edge-coupled directionul
coupler, matched to 50Q input and output lines

i




184 Chapter 8

0.9 - 20 0.9 4
@] ————2s | @]
& ] T T30 &

084 .~ 40 08

1 T~ 0 x

mnn z
0.6 .0/ 0.6

; 150/

U g s N — R S
0.0 0.1 0.2 03 0.0 0.1 02 0.3
Coupling coefficient, ¢ Coupling coefficient, ¢

Figure 8.7 Normalized even- and odd-mode effective permittivities for directional coupler
design, with the condition Zg, Z,, = (50)? applying

In the design of directional couplers, before the line parameters are considered,
the necessary voltage coupling coefficients must be found. Figure 8.6 is derived from
the equations in Appendix 4 and is plotted so that, given the coupling coefficient, the
line parameters may be found. The curves cover the line-separation range
0.1 <s/h <40 and also give the width of the lines in the coupling region,
normalized to the width of a single 50Q characteristic impedance line on the same
substrate.

Curves for the effective permittivity for each mode, normalized to the substrate
permittivity and for use in a 50Q system, are plotted in Figure 8.7 as a function of the
coupling coefficient. An effective permittivity eqf that gives a phase velocity that is
the arithmetic mean of the even- and odd-mode phase velocities is given by

o Ve 4 e
€ ) (8.31)

The percentage difference between the effective mode-permittivities and their
average, which for the parameter range plotted in Figure 8.7 may be as great as 10%,
tends to be greater for small s/h and large g, .

Example 8.2

i) Design a 20dB single-section parallel-line directional coupler with a center
frequency of 1.0GHz on a 1.58 mm substrate for use with a S0Q characteristic
impedance system. The substrate permittivity is 2.5.

ii) If the coupling is not to decrease by more than 1.0dB, estimate the bandwidth for
the design in (i), assuming equal even- and odd-mode phase velocities.
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Solution:

i)

ii)

Using Figure 8.6 and the €, = 2.5 curves, C of 20 dB gives
w/iwS® = 098 and log(s/h) = 0.02, ie. s/h = 1.047
Now from Appendix 3, w®%h = 2.837 giving, for the coupling region
w/h = 2,78
From Figure 8.7
e = 0.875xe, = 2.188, and € = 0.782xe, = 1.955
and, from (8.31)
Eoff = 2.07
The waveiength aiong the coupiing region at 1.0GHz is
A = A/VEg = 208.5mm

Thus, for a 1.0GHz center frequency directional coupler on a 1.58 mm thick
substrate

s=1.65mm, w=439mm, and coupling length = 52.1 mm
From (8.25), the coupled signal for a 1V input is

jCsin@

V1 — c2cosd + jsin®
The magnitude of this signal

V5] =

V3 =

Csind

1

7
[(1 —cHcos?o + sinze]

For a 20dB coupler, V; at the center frequency equals the value for ¢, i.e. 0.1.
When the coupled signal falls by a further 1.0dB

V; = 0.0891
2
2 2 s 20 c )
Therefore (1 —C€*)cos“0 + sin“0 [0.0891 J sin“@
1-¢ 099 |*
tanf = {(————— | = |22 = 1955
o an [(c/o.oxm)2 -1 ] [0.259 ]

giving 6 = 62.9° 117.1°

The electrical length is inversely proportional to frequency. As the center
frequency coincides with an electrical path length given by 8 = 90° and the
coupling is not to fall by more than 1.0dB, then

: : _ |90 _90° -
fractional bandwidth = [62.9° 117.10] x 100 66 %
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8.4 MULTIPLE-SECTION DIRECTIONAL COUPLERS

The analytical equivalence, originally developed by Young [8.9], between the single-
section of a parallel-coupled directional coupler and the forward and reverse waves on
a single stepped-impedance transmission line, is developed in this section. The
equivalent line concept is then extended to analyze multiple-section directional
couplers.

Consider an electrical length, 6, of transmission line as illustrated in Figure 8.8,
that has a characteristic impedance, Z,, and is connected to unit impedance lines at
each end. The output is terminated with a matched load so that there is no reflected
signal.

In Figure 8.8a, the source and load reflection coefficients are identical. The
voltages, V, and Vp, are thus given by (8.4) and (8.5) with I" being the reflection
coefficient of a load Z, with respect to a Z; line, i.e.

Zo -7y
Zo+ 2, ’ (832)

With no loss of generality, V5/2 can be set to unity and (8.4) and (8.5) can be
rearranged to give

jysin6
Vi o= 1+
A V1 - Y2cos® + jsin® (8.33)
and \ -7
1 =
B V1~ 4%cosd + jsing (8.34)
. 2T Vi 1-I?
th =~ d Vi-9% =
i T LA (8.35)

Now, V, can be regarded as the sum of the voltages carried by the incident and
reflected waves in the Z line at A, of amplitudes 1 and d respectively, so that

d = jysin®
V1 - 'yzcose + jsin® (836)
0
| — —t

Zy d TVA Z VBT Zy %Zo
——————— !
A (a) B

[————
input voltage, V,—+ — transmitted voltage, V,
coupled voltage, Vi 4— -——isolated voltage, V,

A ) B

Figure 8.8 The equivalent transmission line for the coupling region of parallel-coupled
lines (a) with no input to the isolated port, ie. the isolated port terminated with just a
matched load. (b) The more general analogy with inputs into both the input and isolated
ports.
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As there is no incident wave in Z line impinging on B, in view of the matched load
to the right of B, the amplitude of the wave moving right from B equals Vj and is

thus given by
VI - y2
V1 - Y2cosh + jsin® (837)

On comparing (8.36) and (8.37) with (8.25), it is apparent that d and t are identical to
the values of V3 and V; in (8.25) if ¢ is equated with y

or _ 22-78
1+T72 72+ 73 (8.38)

Thus, an analogy between the total voltages at the ports of the directional
coupler in Figure 8.1 and the incident and reflected waves in Figure 8.8a has been
established. The coupled port output is simply given by the reflection coefficient
looking into A from the Z line. This reflection coefficient in the analogous circuit is
in some circumstances easier to calculate than the coupling coefficient in the original
coupled circuit.

In Figure 8.8a there is no incident wave from the right of B, because of the
matched load. This is analogous to there being no output at the isolated port 4. If
there were to be a separate excitation at port 4, this would require an incident wave at
B and simple linear superposition then yields the more complete equivalent circuit of
Figure 8.8b. Note that the rotal voltages in a 4-port device are equated to the
traveling waves (incident and reflected) in a 2-port device. With the help of this
equivalence, it is now easy to see that cascading directional couplers, D; and D,, say,
with

and t =

ie. c = -

Port 2 of D; ¢> Port 1 of D,
Port 4 of D; ¢ Port 3 of D,

is equivalent to cascading appropriate lengths of single transmission lines. If need be,
the Z, line may be considered to be of zero length, e.g. as at the junctions of the Z;
and Z, lines in Figure 8.11.

The equivalence just described does not particularly aid in the design of a
single-section directional coupler, but is useful when multiple sections are considered.
Provided that the condition, Zg, Zg, =Z§, is maintained throughout the coupling
region, the principle may also be used for continuously variable coupling between the
lines as in the exponential coupler [8.10, 8.11].

Example 8.3

What configuration of two A/4-long sections of coupled lines, where ports 2 and 4 of
one section are fed into ports 1 and 3 of the second section, gives an equivalent 3.0dB
directional coupler?

Solution:
Two identical sections of A/4-long coupled lines joined directly together are
equivalent to a A/2 coupled length and will not give any coupled signal to port 3,
as seen from (8.25).
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COUPLED ISOLATED

;J (a)
INPUT OUTPUT
1% ~—-T*Jl-——%——-l
=it
mpm OUTPUT
—_—T e e (b)

Figure 8.9 The connection of two A/4-long directional couplers to produce increased
overall coupling. (a) The circuit layout, and (b) the single line equivalent circuit.

In physical terms, the coupled signal from the second A/4 coupler will be
out-of-phase with the signal from the first and the two will cancel. To avoid
cancellation, an additional quarter-wavelength line (without coupling) that gives a
further 180° phase shift to the second coupled signal may be used. This is
illustrated in Figure 8.9a with the single line equivalent circuit in Figure 8.9b.
The center A/4 section (from B to C) is purely to provide a connection and the
appropriate phase shift between the two coupled sections. In the equivalent
circuit, it becomes a A/4-long Z, line. However, in order to derive results which
can also be used in 2 more general situation later (viz. Figure 8.11), Z, in Figure
8.9b is left arbitrary for the time being. With no loss of generality, Z, is made
unity.

The coupled signal level is found from the voltage reflection coefficient at
the input of the equivalent single line. At the mid-band frequency where the line
lengths are all A/4, each section of line acts as a quarter-wave transformer and
this fact allows easy evaluation of the total effective load impedance at plane A.

8 -10
b: ©)
g i
2 ®
B 114
5 (a)
6 ]

-12 T T T T T T T T T

05 1.0 15

Normalized frequency
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Thus the impedances on the line are as follows

at D: Zp =1
at C: Ze = Z}
at B: Zy = 72/Z}
at A: Zy = Z21(2312D) = Z2}123
and the input reflection coefficient

ro- Zazt o _ z¢-2% .
T Za+l oz 72

YARS!

= SIS when Z, =1
Zr+1

For a combination that gives a 3dB coupler
¢ = L, = 0707

ivi zZ Hri“r 1.554
giving = = 1.
' T
and the coupling of an individual section
Z2-1
i
¢ = = = 04142
Zf+1
ie. C, = 1.66dB
Note

i) A greater amount of coupling has been achieved than that given by an
individual coupler, but the overall coupler will have a smaller bandwidth
than one of the component couplers.

ii) A 3dB coupler may also be achieved by another interconnection of two
8.34dB couplers [8.12], with a greater bandwidth than that for this
example. However, ports 2 and 3 of one coupler have to be fed into
ports 1 and 4 of the second coupler and the complete design with the
8.34dB couplers cannot be fabricated in one plane on the same substrate,
without having some of the lines crossing each other.

A symmetrical coupler made from three sections may be synthesized with selected
passband properties. Three typical coupler frequency characteristics are illustrated in
Figure 8.10 and show (a) a single coupler for comparison, (b) a maximally-flat
coupler, and (c) a coupler with 0.2dB ripple in the passband, all the couplers giving
10dB coupling at the center frequency.

Fi 8.10 The fr " stics of 10dB. disectional , ith (@) a singl A maximally-flat coupler exhibits the greatest bandwidth without passband
igure 8. e frequency characteristics o ctional couplers with (a) a single ipple. Th imi ; il oi i d
section coupler, (b) a maximally-flat 3-section coupler, and (c) a 0.2dB ripple, 3-section ripple. The acceptance of a limited amount of passband ripple will give an increase

coupler. bandwidth. Youpg [8.9] gives a detailed analysis of the coupler parameter evaluation
j for 3- and 5-section symmetrical couplers.

i
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¢ <

COUPLING FACTORS

<

e I e

1 Z Zy 7 1

Figure 8.11 Variables for the design of a 3-section directional coupler

Figure 8.11 shows a 3-section directional coupler and its equivalent single line
model, with solutions for the equivalent line impedance, Z, , given in Figure 8.12. It
has already been seen in the previous example that, from the equivalent single line
model, the overall coupling coefficient

zi -7}

zi+2} (8.39)

so that zZ, = ZE[I—CJ (8.40)

1.12
1.10 (b) EQUAL RIPPLE
Zy/Zy A 0.2dB 0.5dB 1.0dB
1.08
1.06 -
1K T A NG
(€) MAXIMALLY FLAT/ /7 S,
1.02 4 (@ asymproTic,” e,
] EXPRESSION
1.00 +——r—r—r—1—"Fr—T—T""T """ T
0 5 10 15 20

Center-frequency coupling, dB

Figure 8.12 The equivalent single line normalized impedance for the end section of 3-
section directional couplers as a function of the overall coupling at the center frequency
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Knowing ¢, Z; and Z, can now be determined. The solutions are strictly true only for
pure TEM modes with equal phase velocities for the even and odd modes, as is the
case with symmetrical parallel-coupled striplines.

For small levels of coupling and a maximally-flat response, curve (a) gives the
asymptotic expression

7+
8 (8.41)

where % = (1 + |¢])/@ ~ |c|) and ¢ is the mid-band overall voltage coupling
coefficient.

Broad bandwidth for a 3-section directional coupler may be achieved if a ripple
in the coupled signal level is permissible in the passband. The advantage of having a
0.2dB ripple has been illustrated in Figure 8.10. Design data for three different ripple
levels (0.2, 0.5 and 1.0dB) are presented in Figure 8.12. In each case, the center
frequency coupling level gives the equivalent single line impedance for the two end-
sections, while the center-section impedance is determined from (8.40). The data for
a maximally-flat design is also shown as (c) in Figure 8.12. )

From (8.26), the coupled signal at the center frequency for a single-section
directional coupler is in phase with the input signal. Further, it was seen in Example
8.3 that there was no coupled signal for a pair of identical couplers in tandem, in
effect forming a A/2 coupled section, as the 180° phase difference between the two
parts gave complete signal cancellation. Now, for a symmetrical 3-section directional
coupler, it turns out that the center section will have the highest coupling coefficient
with the coupling from the two end-sections actually reducing the overall coupled
signal level at the center frequency. Thus, for the overall coupler, the coupled signal
at port 3 will be out-of-phase with respect to the input signal at port 1, and the mid-
band coupling coefficient in (8.39) and (8.40) will be negative.

Z, =

Example 8.4

Design a symmetrical 3-section maximally-flat 20dB directional coupler, giving the
results in terms of the coupling coefficients of the individual quarter-wave sections.

Solution:

For a directional coupler where C = 20dB, the magnitude of the voltage coupling
coefficient is 0.1, and thus ¢ = —0.1 for the overall symmetrical 3-section coupler.
Using the asymptotic expression (8.41) gives the equivalent single line .
normalized impedance for the end section as

Z; = 1.0132
while for the center section, from (8.40)
1
1-(-0.1)]*
- 2|2 "\ )
Z, = (1.0132) [1+(_0.1)}
ie. Z, = 1.1349

The coupling coefficients for the individual quarter-wave directional couplers are
found by working out the input reflection coefficients of sections such as in
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Figure 8.8a. (Remember: the Z,, lines may be of zero length.)
For the end section, Z, = 10132 — ¢; = 0.0131

and the center section, Z, = 1.1349 — ¢, = 0.1259

Thus, the end- and center-section couplers are 37.7dB and 18.0dB couplers
respectively.

These results serve to reinforce the fact that, in 2 multi-section directional
coupler of this form — as a trade-off for the larger bandwidth achieved — the
center section will have tighter coupling when compared with a single-section
coupler possessing the same mid-band coupling specification. This may be a
limiting factor in the design of broadband directional couplers requiring a tight
coupling specification.

8.5 THE LANGE COUPLER

A 3.0dB directional coupler has a voltage coupling coefficient of 0.707 and, in a 50Q
system, even- and odd-mode impedances of 120.7Q and 20.7Q respectively. For
parallel-coupled microstrip lines, extrapolation of the contour plots of Figure 8.5
indicate that, while narrow line widths are required, it will be the minute separation
between the coupled lines that is the limiting factor for manufacturing purposes. The
small line separation is needed in order to enhance the odd-mode capacitance between
adjacent lines, for the small odd-mode impedance to be achieved.

An isolated third conductor [8.13] above, but close to, the parallel-coupled pair
of lines will increase the odd-mode capacitance, Figure 8.13. However, this
configuration has the disadvantage of using additional dielectric material, as well as
not being fabricated with all the conductor patterns in the one plane.

Increasing the number of parallel lines in the one plane for the coupling
structure in place of the original two lines will give more adjacent pairs of edges and
the possibility of increasing the odd-mode capacitance. A series of four parallel lines
is illustrated in Figure 8.14.

For the even mode, all the lines are driven in phase, Figure 8.14(a). For the odd
mode with pairs of lines driven in opposite phase, Figures 8.14(b), (c) and (d), it is
the configuration (b) that gives the maximum capacitance between positive and

h"<h

4
¥

R h

Figure 8.13 The use of a third parallel line to enhance the odd-mode capacitance, from
Malherbe and Losch [8.13] (Reprinted with permission of Microwave Journal, from the November
1987 issue, ©® 1987 Horizon House, Inc.)
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TR e e S ST
(a) (b)
(c) (d)

Figure 8.14 Non-degenerate modes for four parallel-coupled lines, showing (a) the even
mode, (b) the odd mode with maximum odd-mode capacitance, (c) and (d) the other odd-
mode configurations, from Paolino [8.16) (© 1976, Microwaves and RF)

negative driven lines, for fixed line widths and separations. The required odd-mode
potential distribution is forced by connecting the pairs of similar polarity lines
together as illustrated. It will always be necessary for some wire bonds or bridges to
be used in the construction of a practical directional coupler of this type.

The Lange coupler [8.14] is a 3dB coupler design that was the first to utilize this
approach. The coupler is illustrated in Figure 8.15, where it will be observed that the
layout of the ports differs from that for a conventional two-line coupler, with the
direct and isolated ports interchanged. The odd-mode potential configuration is that
of Figure 8.14b. Waugh and LaCombe [8.15] unfolded the Lange coupler design,
Figure 8.16a, to give a design that requires fewer wire cross-connections, as well as
interchanging the physical position of the direct and isolated ports. A further line
configuration, Figure 8.16b, that possesses the same port geometry as the original
Lange coupler, has been suggested by Paolino [8.16]. This design, as with the
original Lange design, may be used if a 3dB equivalent directional coupler is to be
made from a pair of 8.34dB directional couplers, since the output ports of the first
coupler feed directly into ports 1 and 4 of the second coupler.

Initially, the four-line Lange couplers and their derivatives were developed
using an intuitive approach and it was some time before Ou [8.17] provided the basis
for a synthesis approach. Ou considered the capacitances of a system of an even
number of lines, n, with identical widths and separations, Figure 8.17. Only the
capacitances between adjacent lines were considered with the capacitances between
non-adjacent lines being neglected.

For any strip, m

Camt = Cn2 : (8.42) .
COUPLED DIRECT
Q ¥ s —9 |
= — .L[
I A “ A
8 1}
INPUT ISOLATED

Figure 8.15 The four-strip Lange coupler, from Lange {8.14] (© 1969, IEEE)
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COUPLED ISOLATED
:I : y[ (a)
’ N
4
INPUT DIRECT
COUPLED DIRECT

/&b (b)
L] )
INPUT ISOLATED

Figure 8.16 Alternative layouts for the Lange coupler, showing (a) the "unfolded” coupler
of Waugh and LaCombe [8.15] (© 1972, IEEE), and (b) the Lange coupler variation of
Paolino [8.16] (® 1976, Microwaves and RF)

Cmo = Cyp if m=1,n (8.43)
= Cp if m#ln (8.44)

CioC

and C = C _ 10 12
2 107 Cp+Cpy (8.45)

In [8.17], equations are developed to achieve (i) the matched conditions
necessary for a A/4-long directional coupler, and (ii) the required coupled power to
port 3. When a system of only an adjacent pair from the n-conductors (i.e. a two-line
system) is considered, the line capacitances for the pair may be derived from the
known even- and odd-mode impedances for the composite structure as in Figure 8.14.
It is thus possible to present the final equations for the n-conductor system in terms of
the established parameters for a two-line coupler. This approach has been further
developed and verified experimentally by Presser [8.18]. Results for multiconductor
couplers are given by Tajima and Kamihashi [8.19], in particular for the six-line
couplers that are required for 1.5dB coupling levels in the center section of a three-
section 3dB broadband coupler. For the important case of four coupled lines, further
manipulation of the equations given by Presser leads to the following design
formulae.

Let Zy, and Zg, be the even- and odd-mode impedances of a pair of coupled

Ci2

Cm,m+1

r 1

Co=  FCo0 Cmo T TCmio  TCno

Figure 8.17 Interline capacitances for a system of n parallel-coupled lines
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lines that have w/h and s/h equal to that of the final four-line coupler. The ratio, @, is
defined by
Zoo
Zoe (8.46)
and is always less than unity. From the equations of [8.18], ® may be shown to be a
function of ¢, viz.
-c+V9 - 8¢?
P = ————
3c¢+3

¢ here is the voltage coupling coefficient for the complete four-line coupler. For the
complete coupler to be matched to the input connecting lines of impedance Z,, then
Zy, for the two-line coupler must be

V303 + 1002 +3@

Zoo = Zo T+0 (8.48)

Hence, given Zj and ¢ for the four-line coupler, Zy. and Zg, for a two-line coupler
are derived, giving the necessary values for w/h and s/h. Constructing a four-line
coupler with these dimensions and a A/4 coupling length will provide the necessary
coupling and matched conditions.

® =

when n=4 (847)

Example 8.5

Design a 6.0dB four-line interdigitated microstrip directional coupler on a 1.58 mm
thick, &, =2.5 substrate.

Solution:

The voltage coupling coefficient, ¢, for a 6.0dB directional coupler is 0.5. For a
coupler with only two lines, it is seen from (8.28) and (8.29) that the even- and
odd-mode impedances will be 86.8Q2 and 28.9Q respectively. A rough
extrapolation of the curves in Figure 8.5 would indicate that a value for s/h <« 0.1
is required if there are only two coupled lines in the directional coupler. From
(8.47), the odd- to even-mode impedance ratio, @, is 0.4768, with (8.48) giving
the odd-mode impedance of a pair of coupled lines with the same w/h and s/h as
Zyo, =67.96Q. To give the desired impedance ratio, the even-mode impedance
for the same pair of lines is Zg, = 142.5Q. Using the equations from [8.8],
reproduced here in Appendix 4, for these impedance values, gives w/h = 0.664
and s/h = 0.283 while, from (8.31), €. = 1.89.

The treatment given here so far has assumed zero thickness conductors. Finite
conductor thickness for given w/h and s/h will have the main effect of increasing the
odd-mode capacitance, ie. Zy, is reduced, leading via (8.21) to overcoupled
characteristics for the coupler. '

From detailed experimental studies with €, = 6.6 and 10.0, Presser [8.18]
concluded that a line-separation correction term, modified from one in Wheeler [8.20}]

As _ _t/h [1+In 41tw/h”
h n\/se“;% t/h (8.49)
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was applicable. For a practical circuit, the line separation has to be increased by As
over the value calculated for zero thickness lines. The increased gap is achieved in
practice by reducing the widths of the coupled lines, keeping the overall lateral
dimension constant.

EXERCISES

8.1 Two 50Q characteristic impedance microstrip lines, forming different parts of a microwave
circuit, are in parallel with each other for a distance of 50 mm with a separation of 5 mm
between the lines. The lines are on a 1.58 mm thick, € =2.5 substrate. Estimate the
maximum level of interference that may be expected between the lines and the frequency
(frequencies) at which this maximum level may occur,

8.2 Design a single-stage parallel-line coupler on a 3.2 mm thick, ¢, =2.5 substrate, with a power

split ratio of 15dB at a center frequency of 1.5GHz.

8.3 Verify that two 8.34dB parallel-coupled directional couplers, connected so that ports 2 and 3 of
one coupler are connected either directly or with equal path lengths to ports 1 and 4 of the
second coupler, give an overall 3.0dB coupler performance.

84 What value. directional couplers are required if a pair of identical couplers are to be connected
together as in the previous exercise to give an overall 6.0dB coupler performance ?

8.5 Design a maximally-flat 3-section symmetrical 13dB coupler that is to be fabricated on a
1.0 mm thick, &; = 10.0 substrate.

8.6 Yeﬁfy that, for any coupling length 6 of two lossless parallel-coupled transmission lines, there
is a balance between the input and output powers. Assume that the even- and odd-mode
impedances have been chosen so that Z, Zpo = Z3 and that the mode phase velocities are equal.

8.7 The direct port, i.e. port 2, of an ideal parallel-line 10dB directional coupler is open-circuited at
the plane of the junction between the coupler and the external line to that port. At the coupler’s
mid-t.)a_nd frequency, what are the input V.S.W.R. to the coupler and the signal levels at the
remaining two matched ports?

8.8 Design an 8.34dB interdigital-line directional coupler for a center frequency of 2.0GHz on a
1.58 mm thick, € = 2.5 substrate.

89 §how tha.t ZoeZoy = zg is a necessary condition for an input match to a pair of coupled lines,
ie. to satisfy (8.13), and to produce a zero voltage to the isolated port, in (8.16).

8.10 Calculate the bandwidth of an ideal 3dB quarter-wave coupler, if the direct and coupled powers
are not to differ by more than 0.5dB.
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@ Filters

9.1 INTRODUCTION

This chapter introduces the reader to the problems of microstrip filter design and
presents some useful design techniques. The chapter thus is not meant to be a
comprehensive treatise on microstrip filters; such a treatment would exceed the scope
of this book. For a more comprehensive treatment of filter designs, the reader is
referred to specialized texts, e.g. [9.1, 9.2].

In the next section, the injection and blocking of d.c. bias voltages is described
using a filter characteristic that is ideally suited to the d.c. source requirement, i.e.
appearing either as a d.c. open or short circuit, while at the same time appearing
transparent to the microwave signals. Bias injection networks are simple structures in
which little attention is paid to the detail of the transmission characteristics across the
frequency band.

The extraction of a lower frequency signal, such as a 70MHz intermediate
frequency signal from a microwave mixer circuit, requires a low-pass filter that needs
to be more carefully designed than a bias network. Low-pass filters can be designed
from the classical lumped-element low-pass prototype circuits and may either be
fabricated in lumped element form or transformed into equivalent transmission line
networks.

Band-pass filters require precise transmission characteristics that allow a desired
band of signals to pass through the two-port network. Thus, between a transmitter
and the transmitting antenna, a band-pass filter may be used to attenuate unwanted
signals and harmonic components that may cause interference to other users of the
electromagnetic spectrum. Conversely, between an antenna and a receiver, a band-
pass filter will reject out-of-band signals that may cause interference within the
receiver, especially if they are at a high signal level in comparison with the desired
signals.

Band-stop filters reflect signals over a limited range of frequencies while
allowing all others to pass through the network. They are used to minimize the
transmission of possible high-level signals, e.g. the local oscillator of an upconverter
where only the upper-sideband is desired, and as tuned reflective elements in
oscillator circuits.

It will be assumed here that the reader has a basic knowledge of classical
lumped filter designs. Prototype designs are available in classical textbooks and
handbooks [9.3—-9.5]. Common filters include maximally-flat (Butterworth), equi-
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ripple (Chebyshev), Bessel and elliptic filters, where each name is descriptive of the
filter characteristics. It will be assumed that the reader is able to use published filter
tables intelligently for the design of filters.

There are two basic mechanisms for achieving filter action, that is, for obtaining
variation of signal transmission through a circuit. If the filter is lossless, the only way
in which a transmission of less than unity may be achieved is by reflection at the
input. Most filters are of this type and, in their case, attenuation must imply a high
reflection coefficient at the input. Thus it is impossible to maintain a good match
across the attenuation band for lossless filters. Conversely, matching the input for no
reflections with lossless elements, as in Chapter 6, will automatically give complete
transmission from input to output.

Reduction in transmission can also be achieved if lossy absorbing elements are
inserted inside the flter. In this case, at least in np:nciPlP a good match across the
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attenuation band could be maintained, as the reduction in transmission is no longer
predicated on the presence of reflections at the input. An example of a filter
depending on a lossy element is the wavemeter, where a resonator, coupled to a
waveguide or a transmission line, couples energy into itself at resonance and
dissipates it within the resonator losses. This is really a form of band-stop filter.
Another example occurs when a diplexer is formed by connecting a low-pass filter in
parallel with its complementary high-pass network. If the outputs of the two parallel
networks are combined, say with a hybrid, an all-pass network is obtained. However,
with completely separate loads a diplexer is obtained, with low frequencies going to
one load and high frequencies to the other, while maintaining a matched input at all
times for the combined network. If, say, only the low-pass function is of interest,
then the low-pass filter section that is matched in both the pass and attenuation bands
may be used, with the matched load terminating the high-pass network simply being
an internal lossy element as far as the low-pass network is concerned.

While microstrip filters may take many forms, a useful range of filter designs
may be obtained by taking classical lumped filter designs and converting them to
microstrip form, using the equivalence of short lengths of transmission line to
inductance or capacitance. An extension of this procedure, applicable to the case of
band-pass and band-stop filters, is not to take individual inductances and
capacitances, but to replace whole resonating L-C sections of the lumped-element
prototype with resonant lengths of microstrip line. To achieve the required range of L
or C values it may be necessary to use quite long lines, due to the limited range of
characteristic impedances that are available in practice. The short length line °
approximations then may no longer hold and a correction to the classical filter design
process may be required. Also, corrections due to losses in resonator elements may
be needed, especially in very narrowband designs. However, this is not a problem
unique to microstrip filters, as it is similar to that found in classical lumped filters.

Microstrip equivalents exist for both series-resonant and parallel-resonant
circuits. However, it is often desirable to use resonators of one type only. in which
case immittance inverters may be employed to convert between the two types of
resonant circuit. Immittance inversion in lumped circuit filters is achieved with active
circuits to produce filters with only one type of reactive element, as in active filter
arrangements with only capacitors. In microstrip circuits, immittance inversion is
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often conveniently achieved with quarter-wave directional coupler arrangements.

Given a particular low-pass lumped filter design, a complementary high-pass

filter is obtained with the transformation

Y ®
£ 5 3
w] ® (8.1
while L 5 L [_0)_ ]
] Q | wg ® (9.2)

transforms from the low-pass to band-pass form. In both equations, @’ and w] are the
frequency variable and band-edge frequency respectively for the low-pass filter. In
standard filter tables, ] is normally 1.0 radian.s™!. Likewise ®; is the band-edge
frequency for the high-pass filter with a frequency variable, w. For ihe band-pass
filter transformation in (9.2), g is now the center frequency and Q is the fractional
bandwidth given by Q = (w, -~ @,)/w,, ©, and ®; being the band-edge frequencies.
Structurally, (9.1) is equivalent to replacing every inductor in the low-pass filter with

a capacitor and every capacitor with an inductor. In the low-pass to band-pass
transformation (9.2)

L - series L-C resonator
and C —  parallel L-C resonator.

Th‘e !mnsf(?rmation (9.2) applied to a high-pass filter will yield a band-stop filter.
This is equivalent to taking a low-pass design and letting

L —  parallel L-C resonator
and C - series L-C resonator.

Filters in microstrip form may also be constructed with dielectric resonators.
They offer t}.le advantages of improved pass- and stop-band filter characteristics at the
expense of increased circuit complexity in design and fabrication. A discussion of
dielectric resonators will be found in Chapter 10.

9.2 BIAS NETWORKS

Mic_:rowave diodes and transistors require appropriate d.c. voltages to be applied to
their ?erminals for correct circuit operation. The necessary connections of d.c. power
supp11e§ and earth return paths to the main microstrip transmission line are made
using biasing networks. As a filter, a bias injection network is one that is designed to
combine both microwave and low frequency (d.c.) signals without any transmission
of energy between the microwave and low frequency ports. Thus, not only should
there be no low frequency path to the microwave input branch, but the d.c. input port
must a_tlso appear as a microwave open circuit at the junction to the through
transmission line. A circuit diagram of a bias network that has these functions is
illustrated in Figure 9.1. The network may be considered in two parts:

i) For -the microwave input branch, an infinite capacitance is ideally required to
provide a d.c. open circuit and a microwave short circuit.
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DC INPUT OR
GROUND RETURN
MICROWAVE INPUT ~—I TO THE ACTIVE CIRCUIT

Figure 9.1 A bias injection network

ii) For the d.c. input branch, an infinite inductance will give the d.c. short circuit and
will appear as a microwave open circuit at the plane of the through ransmission
line.

2.1 The d.c. open circuit

ini 3 3 3 with dienancianag of tha ardar AF T o , Py
Miniature chip ceramic capacitors with dimensions of the order of 1 mm and with a

capacitance of 1000 pF make ideal d.c. blocking elements, since 1000 pF at 1.0GHz
gives an impedance of 0.16 Q2. Such an impedance as a series element in a 50Q
characteristic impedance transmission line gives a negligible reflection coefficient of
magnitude 0.0016. This value naturally reduces in magnitude with increasing
frequency. However, a detailed study by Ingalls and Kent [9.6] of this type of
capacitor mounted as a series element in a 50Q microstrip transmission line has
shown the existence of resonances, giving high impedance values at resonance,
associated with the equivalent folded transmission line of its structure. The
separation between resonances depends on the capacitor size, and insertion loss
maxima of up to 2dB have been observed at gigahertz intervals.

A narrowband design in the form of a /4 open-circuited stub, series-connected
in the line, will give the desired result of a d.c. open circuit. The physical realization,
with the "stub” folded along the main line as illustrated in Figure 9.2, is a more
complex structure and needs rigorous analysis in terms of coupled transmission lines.

DIELECTRIC FILM p——— N4 ———
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Figure 9.2 A tightly coupled quarter-wave line forming a d.c. open circuit
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Figure 9.3 The performance of a A/4 open-circuited stub series-connected in a 50€2 line,
with the stub characteristic impedance as a parameter. The stub is exactly A/4 at a
normalized frequency of unity.

i
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A low characteristic impedance, compared with the 50 Q microstrip transmission line,
is required for broadband operation, as is seen from Figure 9.3.

An appraisal of the complete microwave network in the vicinity of a solid-state
element may reveal that a specific d.c. block is not required for the bias injection
network. This will be the case if, for example, a parallel-coupled directional coupler
or band-pass filter automatically provides the required d.c. blocking function.

XSS

SHORT CIRCUIT
Figure 9.4 A d.c. return network

9.2.2 The d.c. return and r.f. block

A quarter-wave shunt stub line with a short-circuit termination, as illustrated in
Figure 9.4, will transform to an open circuit at the main through line for the design
frequency. The microwave short-circuit termination on the stub line may be either a
true short circuit for a d.c. ground return or in the form of a capacitive feed-through
element. The short-circuit connection is shown in Figure 9.4 as a connection between
the strip and the ground plane at the edge of the substrate. Since the circuit geometry
may preclude this arrangement, metal posts may be inserted through the substrate and
be soldered to both the strip and the ground plane. End-effect corrections for the
short-circuit posts are not normally required since such an element would only be
used in frequency-insensitive situations. Of importance is the broadband
performance of the circuit, as illustrated in Figure 9.5 for two possible stub
characteristic impedances on a 50 Q line.

2.0

1.8

& 16
2
i 1.4
>

80Q2 80Q

124 120Q 120Q

1.0

0.5 15

1.0
Normalized frequency

Figure 9.5 The perfon:na_nc; of a A/4 short-circuited stub parallel-connected in a 50Q line,
with the stub characteristic impedance as a parameter. The stub is exactly k/4 long at a
normalized frequency of unity.
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Figure 9.6 Animproved d.c. injection network with A/4 sections

The arrangement of Figure 9.4 gives better performance for a high ratio of
Zgub!/Zgy. Therefore, if the main line is transformed through a low impedance
quarter-wave transformer to give an even lower impedance at the plane of the stub, Z;
say, as is illustrated in Figure 9.6, then the higher ratio Z,,;,/ Zy leads to even better
circuit performance. With the high impedance stub line at 120Q, Figure 9.7
illustrates typical performance curves with the characteristic impedance of the main
line quarter-wave transformers as a parameter.

2.0

1.8
%164
2
1.4
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Figure 9.7 The input V.S.W.R. of the network of Figure 9.6, as a function of frequency
and normalized to the frequency where line lengths are A/4 long. The stub-line impedance is
maintained at 120Q with Zy = 50Q.

9.3 LOW-PASS FILTERS

The bias network for a microwave circuit that has just been considered is one form of
a low-pass filter. This filter, taking the form of a quarter-wave high impedance line
with feed-through capacitors, however, may be quite unsuitable for the injection of
if. signals into a circuit. A filter with more precise low-pass characteristics is
required.

Consider an n-section lumped element prototype low-pass filter, illustrated in
Figure 9.8. For x from 1 to n, the prototype elements represent an alternating

i
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LY K3 Xn
Ko T K2 I Kn Kn+1 Kn41
SOURCE LOAD LOAD
(a) (&
Figux_'e 9.8 A prototype n-section low-pass filter with an inductor K as the first element,
showing (a) the case of an even n, with Kp, a resistance and (b) the case of an odd n, with
Kp+1 a conductance

network of series inductances and shunt capacitances, with either type of component
as an end-element in the filter network. In Figure 9.8, x, is shown as a series
inductance, but x; could equally be a shunt capacitance, with x;, a series inductance,
etc. The termination elements, x; and Kns+1, When considered as a continuation of the
sequence of series and shunt elements, will be resistances if adjacent to a capacitive
element and conductances if adjacent to an inductive element. The other k-values are
in henries or farads as the case may be. Ky may equal unity without loss of generality,
but some filters, in particular those with pass-band ripple and an even number of
sections, will not necessarily have Kpy1 = 1. In these cases, the correct interpretation
of Ky, as either a resistance or a conductance is important.

Frequency parameters for the prototype are expressed as primed quantities,
while those for an actual circuit, obtained from the prototype by transformation, will
be expressed by an unprimied notation. Typical attenuation responses for a prototype
low-pass filter, terminated by unit source and load immittances, are illustrated in
Figure 9.9.

The out-of-band attenuation between the source and load is due to the reflection
of the input signal back to the source. A low-pass filter that has an inductance as the
first reactive element will present a high input impedance above the pass band.
Connected in parallel with the main line, it may be used to couple out a low
frequency signal from the main line, with minimal disturbance to the microwave path.
?onversely, with a capacitance as the first reactive element, the filter has a low input
impedance above the pass band. This latter configuration may be useful for a low
frequency path to a diode that otherwise requires a low impedance to ground for a

microwave return path at that terminal.
/ | JJ
0 T 4
[

T ]
4 , [ ,
@ M (b) @i © @
Figure 9.9 Low-pass filter attenuation/frequency responses showing (a) the ideal low-pass

characteris_tiq, (b) a maximally-flat or Butterworth response with two sections and (c) the
1.0dB equi-ripple or Chebyshev response with two sections

Attenuation, dB
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For the ideal low-pass characteristic, Figure 9.9a, there is no loss at any
frequency below the edge of the pass band at @}, but infinite loss above that
frequency. A maximally-flat or Butterworth response, Figure 9.9b, cannot be made
any broader in bandwidth without attenuation ripples appearing in the pass band. A
small level of pass-band ripple, Figure 9.9¢c, may indeed be desirable since there is the
added benefit of a much steeper transition region between the pass and stop bands.
For the equi-ripple filter, the pass-band edge at ] is the frequency above which the
attenuation will be greater than the maximum pass-band ripple attenuation. However,
as such a definition will not be meaningful for a maximally-flat filter, ] is taken at
the 3dB attenuation level for this case. An allowance must be made if the low-pass
filter specification calls for an attenuation other than 3dB at some nominated band-
edge frequency.

9.3.1 Terminology

The transmission properties of filters will be described by Pout/Payg, Where Poy, is the
power delivered by the filter output to the load and Pay, is the available power from
the source. Poy,/Pyy, is formally known as the transducer power gain, G,, of the
two-port network. More will be said about G, in Chapter 11, but for the present it is
to be noted that G, is a function of both the source impedance Zg and the load
impedance Z;. Thus Gy is not meaningfully defined unless both Zg and Z; are
specified. It is usual practice to make Zg=Z, =Z and, for prototype filters, Z is
often made 1Q2.

In the context of filters, G;<1 and it is more convenient to speak of an
attenuation or a transmission loss that is greater than unity, by taking 1/G,. Thus
attenuation in dB will be defined by 10/0go(Pyyg/Poy). Insertion loss is also a term
that is often used. However, care must be exercised in using this term unless
Zy=1Z; =7y, in which case the insertion loss or gain is identical to 1/G; or G,
respectively, as will be seen in Exercise 11.11.

Attenuation, insertion loss, and transmission loss will continue to be used
interchangeably in the remainder of the book, with the assumption that they are
evaluated with Zg = Z, = Z,,, unless specifically indicated otherwise.

9.3.2 The maximally-flat response
The output power for an n-section low-pass filter that possesses a maximally-flat
response is given [9.1] by

1
Pout = o an X Pay
1+ (@) ) (93)

The output power is one half the input power at @ = ], where @ is the 3dB
frequency. The filter attenuation, given by

L = 10logy,

1+ (w'/mfl)zn] dB (9.4

is plotted in Figure 9.10 and may be used as a guide to estimate the required number

’
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Figure 9.10 The normalized response for n-section maximally-flat low-pass filters

of sections for a practical low-pass filter. The curves may also be used in §9.4.5 for
an estimation of the number of sections that are required for a narrowband band-pass

filter. Now, with ko = k,,; = 1, and with ] = 1, the prototype element values [9.1]
are computed from

K = 2sin[-(2k—;nl)—}, k=1 - ,n

(9.5)
The numerical values for k. with filter orders from 1 to 7 are presented in Table 9.1.

Table 9.1 Prototype element values for a maximally-flat low-pass filter

n 1 2 3 4 5 6 7

k; | 20000 | 1.4142 | 1.0000 | 0.7654 | 0.6180 | 0.5176 | 0.4450
X, 14142 | 2.0000 | 1.8478 | 1.6180 | 1.4142 | 1.2470
X 1.0000 | 1.8478 | 2.0000 | 1.9319 | 1.8019
K 0.7654 | 1.6180 | 1.9319 | 2.0000
Xs 0.6180 | 1.4142 | 1.8019
K 0.5176 | 1.2470
X7 , 0.4450

9.3.3 The equi-ripple response

A complete exposition of the theory for equi-ripple or Chebyshev response filters
{9.1] is beyond the scope of this book and only the relevant equations that are used to
generate the filter prototype coefficients are presented here.

Let the magnitude of the pass-band ripple be L, and the frequency at the band
edge where the filter loss is equal to the pass-band ripple be w]. Between a unit
immittance for the source and an appropriate load immittance — that is later seen to
be other than unity for an even number of sections — the output power is given by
1

P = —— . x P
T 14 RyClw ey A (9.6)

3
¢
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where F is a constant, related to the pass-band ripple L, (dB) by
F, = 101%-1 (9.7)

and Cp(x) is the Chebyshev polynomial of order n and argument x. The generating
equation for the Chebyshev polynomial is

Cp(x) = 2xCpy(x) — Cpo(x) (9.8)
with Cox) = 1, Cy(x) = x and Cp(1) =1
o’ = © makes x = 1 and the polynomial becomes unity for.all n. When x> 1, th.e
Chebyshev polynomial increases monotonically with ipcreasmg x while for x < 1, it
oscillates as a function of the polynomial order within the range zero 10 unity. It
follows from (9.6), that the attenuation at @' = () is also the maximum pass-band

s - Jich
attenuation, which in fact occurs at cvery frequency within the passband for whic

Ci®) = 1. |
Let the source immittance be unity, i.e. Xg=1. The prototype element values
are then given [9.1] by

4
Xy = —
1 F2
ag-13k
K = ———, k=2, -,n
k b1 ¥k
Xpe1 = 1, for n odd
= coth’F,),  for n even (9.9
1 Ly
where Fy, = Eln coth 17372 (9.10)
(2R
Fp = sinhj—= .11
n
& = ""Si“[&:;_nlml’ k=1 -.n 9.12)
by = FZ+ sinZ[—knﬂ], k=1, -,n 9.13)

Table 9.2 gives the prototype element values for equi-ripple f.tlter's with L, =0.1dB
and 0.25dB and with the filter order, n, from 1 to 7. The.termmanon element, K“’t‘ .
is unity and of the same dimension as K for the symmetrical odd-order filter but, for
the even-order filters, there is a dimensional inversion between t}.\e two ends of the
filter, i.e. if X is a resistance, then Ky, is a conductance and vice versa. Furtht:.rT
there is an immittance magnitude transformation in tl.xe even:order case. For this
reason, the odd-order equi-ripple filter is more common in practice.
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Table 9.2 Prototype element values for an equi-ripple low-pass filter K, =08794  x3=08794
Pass-band ripple =0.1dB, F,=0.0233, F,=12894 38 O 0
n 1 2 3 4 5 6 7 § x0=1% +x2=1.1132 ?cmﬁl
Ko | 1.0000 [ 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 £
X; 0.3052 | 0.8430 | 1.0316 | 1.1088 | 1.1468 | 1.1681 1.1812 :
by 06220 | 1.1474 | 13062 | 13712 | 14040 | 14228 Figure 9.11 The 0.05dB Chebyshev prototype network for Example 9.1
K 1.0316 | 1.7704 | 1.9750 | 2.0562 | 2.0967 - -
KZ 08181 | 13712 | 1.5171 | 15734 The final network is illustrated in Figure 9.11.
Xs 1.1468 | 1.9029 | 2.0967 ii) For the Chebyshev response, from (9.6) and (9.7), the attenuation
K 0.8618 | 1.4228
Ky 1.1812 _ Lr/lo_ 20\ fen?
Kne | 1.0000 | 1.3554 | 1.0000 | 1.3554 | 1.0000 | 1.3554 | 1.0000 L= 10’0&0{1 +(10 I)XC“(O’/“")]
Pass-band ripple = 0.25dB, F;=0.0593, F,=1.0603 with L, = 0.05dB and, from (9.8), the Chebyshev polynomial
" 1 > 3 7y 5 Py 7 G = 4x° - 3x  withx = o/
Ko 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 ’I‘}.lis response is p!otted as curve (a) in Figure 9.12. A comparison is made
K | 04868 | 1.1132 | 1.3034 | 1.3782 | 1.4144 | 1.4345 | 1.4468 with a three-section maximally-flat filter that has the same low-pass
X, 0.6873 | 1.1463 | 1.2693 | 1.3180 | 1.3422 | 1.3560 bandwidth to the 0.05dB attenuation level. While ] is unity for the band
K3 1.3034 [ 2.0558 | 2.2414 | 23126 | 2.3476 edge in the Chebyshev response, the same parameter represents the 3dB
Ky 0.8510 | 1.3180 | 1.4279 | 1.4689 frequency in the maximally-flat filter. Solving the maximally-flat response
Ks 1.4144 | 2.1737 | 2.3476 equation, (9.4)
Ks 0.8858 | 1.3560 6
X 1.4468 _ a o
Kneo | 10000 | 1.6196 | 1.0000 | 1.6196 | 1.0000 | 1.6196 | 1.0000 L =005 = 10logfl + o] ] ]
to find the normalized frequency for 0.05dB attenuation, gives
Example 9.1 ®’ = 0.4756 o). For a direct comparison with the Chebyshev response, the
i) Evaluate the prototype component values for a 3-section Chebyshev response expression
) low-pass filter that has a pass-band ripple ?f 0.05dB : L = 10log;o(1 + (0.4756 &)5)
i) Compare the filter frequency response with a maximally-flat filter that has the . lotted b) in Fi 9.12
same bandwidth to the 0.05dB attenuation level. 1s now plotted as curve (b) in Figure 9.12.
Solution: 20
i) An equi-ripple filter that has an odd number of sections has symmetrical i
component values about the center element. Thus, in this case only K, and x, m
need to be evaluated. © 10 @
From (9.10-9.13), the required terms are found in the following order: g‘ (b)
8
F, = 14626 F, = 11371 g 1
Q
a; = 1.0000 a, = 2.0000 < oA
b, = 2.0430 N R ORNC)
and the prototype element values are calculated from (9.9) as 0 0 T T T ] T ] ! " 5
K = 08794 = iy Normalized frequency
X = 1.1132 Figure 9.12 A comparison of equal bandwidth low-pass filter responses showing (a) the
2 ) 0.05dB equi-ripple (Chebyshev) response, and (b) the maximally-flat response
i
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9.3.4 Scaling the prototype values

The prototype values that have been derived for maximally-flat and equi-ripple
responses have element values that are appropriate for a 1Q source impedance and a
cut-off frequency w] of 1.0 radian.s”!. The prototype values may now be scaled in
two steps to give the practical values for a low-pass filter. For the first stage of
scaling, the prototype values are scaled such that the impedance of each element
increases by the same ratio. This gives derived values that are now adjusted to a new
impedance level, say 50Q, while the cut-off frequency still remains at ®). The
second stage of scaling is carried out to adjust the frequency properties of the network
while maintaining the impedance values of all the elements at the new frequency.

Let the impedance go to x ohm and the cut-off frequency to y radian.s”!, then

0 [P
R X -
R xR, L - y LadC —> lnyC (9.14)

Example 9.2

i) Calculate the inductance and capacitance values for a maximally-flat low-pass
filter that has a 3dB bandwidth of 400MHz. The filter is to be connected
between 50Q source and load impedances. It must present a high input
impedance at 1.0GHz and, at that frequency, have an attenuation greater than
20dB.

ii) Up to what frequency will the attenuation be less than 0.1dB?

Solution:
i) From (9.4), with a 3dB frequency f; of 400 MHz, the attenuation at 1.0GHz
is given by
2n
_ 1000
L = 10log)p{l1+ 200 ]
Li=x;=1 L;=x;=1
IO _L o
Go=xp=1 TC2=K2=2 Gpyi=kpy =1

(a)

19.9nH 19.9nH

00 - J_ oo

50Q _l_ 15.9pF 5002

(b)

Figure 9.13 The 3-section maximally-flat filter for Example 9.2, showing (a) prototype
values and (b) the actual circuit values

S R i A
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Thus, with L = 20dB, the minimum number of sections is
I S L0 _ - 1
n 3Tog o35 % log;0(10 1) = 25

i.e. the filter must have a practical minimum of three sections. This will give
an attenuation of 23.9dB at 1.0GHz.

The maximally-flat low-pass prototype with three sections and an
inductance as the reactive element at each end in order to satisfy the high-
frequency high impedance requirement is illustrated in Figure 9.13. Each of
the prototype values is scaled to allow for a transformation first from 1Qto a
50Q characteristic impedance and then from a cut-off frequency of
1.0radian.s™! to 400MHz. The results are presented in Table 9.3 and in
Figure 9.13b.

Table 9.3 The component values for a maximally-flat low-pass filter

Impedance Frequency
Prototype scaling scaling
L, H 1.0 = 50.0 = 199x107°
G, F 20 = 0.04 = 159x1072
L;, H 1.0 = 50.0 =  199x107°
Zy, Q 1.0 = 50.0 = 50.0
if) From (9.4), the insertion loss is less than 0.1dB up to a frequency fyMHz,
given by
o1 = 100g{1 + [-2]°
1 = og{l + 200
ie. fo = 213MHz

9.3.5 Practical considerations

A low-pass filter may be constructed from a tandem connection of alternating high
and low characteristic impedance lines. Characteristic impedance values that are as
extreme as possible will lead to the best approximations to lumped inductive and_
capacitive elements. However, because of the transmission line nature of the
elements, the lumped component approximations for a particular length of line are not
as accurate when the frequency increases and there will be a degradation of the stop-
band performance. This degradation for a stripline low-pass filter has been calculated
by Howe [9.7, Figure 6.12] as a function of line impedance selections. Howe
recommends (i) that additional sections should be included as a safety measure and
(i) that the filter 3dB cut-off frequency should not be too low; a value about one-third
of the frequency that has to be blocked should be considered. This second
recommendation implies that the L and C values for the low-pass filter will be kept
small and thus may be modeled using the short line approximation.

Consider a practical low-pass filter with alternating high and low impedance

i
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sections. There will be fringing fields from the ends of the low impedance lines. The
finite lengths of line further require that the short line approximations are modified by
the inclusion of the full IT- and T-equivalent circuits, as discussed in §2.2.1, for the
high and low impedance sections respectively. These considerations necessitate an
iterative approach, with the correction elements modifying the initial ideal design.
For a high impedance line, the line length / in terms of the required inductance is
given (2.38) by

Ay
I = E‘{sm l(coL/ZH)

(9.15)
with the two shunt-capacitance elements
1 f ! 1
C = 2. t EiLN
LT ez ““[xH (9.16)

In these two equations, the values of Ay and Zy are the wavelength and characteristic
impedance associated with the high impedance microstrip line.

In a similar manner for the low impedance line, the line length for the desired
capacitance is given by

Mo
S P |
i sin” i (wCZy)

(9.17)
and the two series-inductance elements of the T-equivalent model are
Zy nl
L = —=tan|a—
c T To ML (9.18)

The transmission line lengths of a practical low-pass filter are found using an
iterative procedure. The initial element lengths are found and the circuit values are
modified to allow for the fringing capacitance, the capacitive components of the high
impedance lines and, to a lesser extent, the inductive components of the low
impedance lines. New element lengths are now determined and the process repeated
until a sufficiently stable solution is found. This process is illustrated in the following
example.

Example 9.3

Design a fifth-order maximally-flat low-pass filter with a 3dB cut-off frequency of
2.0GHz for use in a 50Q characteristic impedance system. The filter is to be
constructed on a 1.58 mm thick, €, = 2.5 substrate.

Solution:
The prototype filter elements are found in Table 9.1 and are scaled for impedance
level and frequency such that
¥k Zo Ki
H C = —F
® k= 0z, (9.19)
where Zj = 50Q and © = 47X 10° radian.s™!. The circuit element values that
result are presented in Table 9.4. Data for the different values of characteristic

Ly =
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impedance lines that have been selected to be used on the 1.58 mm thick, - =2.5
substrate are presented in Table 9.5.

Table 9.4 The component values for a fifth-order maximally-flat filter

k Kk Ly, nH | C, pF
1| 0.618 246 -

2| 1.618 - 2.58
3 | 2.000 7.96 -

4 | 1.618 - 2.58
51 0.618 2.46 -

Table 9.5 Transmission line data for the low-pass filter construction

Zy, 2 % w, mm | € | A, mmat2.0GHz
25 7.28 1150 | 2.226 99.8
50 2.837 4.48 2.090 103.8
130 0.404 0.64 1.901 108.8

The 130% line is used for each inductive component, with the line length
and correction capacitance derived from (9.15) and (9.16) respectively. Hence

L; = 246nH, Z,; = 130Q = [, =0.038k;= 42mm, C_ = 0.073pF
L; = 7.96nH, Zy = 130Q => [3=0.140A4=152mm, C_ = 0.287pF
A T-equivalent circuit with a shunt capacitance as the major component is used

for a short length of low impedance line. From (9.17) and (9.18)

C, = 258pF, Z; = 25Q = [,=0.150A, =150mm, Lo = 1.02nH
The desired values of the circuit inductances and capacitances are reduced by the
values of the adjacent line correction terms. Thus

L, = 246-1.02 1.44nH
2.58-0.073~0287 = 2.22pF
Ly = 796-2x1.02 5.92nH
An iteration is now undertaken to recalculate I, [, and I3 from L;, C5, and L3
just calculated, giving
l; = 242mm with C = 0.043pF
l, =12.26mm with Lo = 0.81nH
and l; =10.55mm with C = 0.192pF
From the filter symmetry, I, = I, and I5 = I;. Further iterations may not be

necessary, but if they are carried out then these correction terms just calculated
are subtracted from the initial L and C values given in Table 9.4.

@
[N}
It
]

1

Allowances must now be made for
i) the fringing capacitance at each end of the low impedance sections,

t
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INPUT  S0Q ‘]——L
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' |
Al Al T
2| b e
Figure 9.14 One half of the microstrip circuit for the 2.0GHz low-pass filter
30 /
0
=204 (a)
=3
2
g
£10- (b)
< 3dB
[«— pass band
0 T T T T T T T T v T T
0 1 2 4 5 6

3
Frequency, GHz

Figure 9.15 A comparison of the responses of the low-pass filter in Example 9.3, showing
(a) ghe lumged-element circuit response with five sections, and (b) the transmission line
equivalent circuit response

i) the additional 0.047pF capacitance associated with the IT-equivalent network
for [; at the step junction between the high impedance line and the 50Q input
lines. A similar correction is made between Is and the output line.

In both cases, the effects will be compensated by lengthening the high impedance

lines, with correction lengths Al and Al as shown in Figure 9.14.

A plot of the lumped element circuit response compared with the
transmission line equivalent network with finite line lengths obtained after one
iteration above, but still assuming ideal lines that do not have any dispersion or
step-junction fringing capacitance, is given in Figure 9.15 and clearly illustrates
the reduced stop-band attenuation for practical circuits.

9.4 BAND-PASS FILTERS

A Ttesonating structure that forms the basis of many microstrip filters is a half-
wavelength section of line that ideally is terminated at each end by an open circuit.
The physical line will be reduced in length from a half wavelength when allowances
are made for the open-circuit fringing capacitances discussed in §5.2.
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There are two basic forms of coupled-resonator band-pass filters in microstrip
line, named by the method for coupling energy into the resonators. The first form, an
end-coupled filter, has capacitive coupling from each end of the resonator into the end
of the adjacent line. On the other hand, edge- or parallel-coupled filters have
resonators that are coupled through the even- and odd-mode fields along the edges of
the lines. Parallel-coupled filters are generally preferred, because they lead to as
much as a 50% reduction in length. Furthermore, larger gaps between lines are
permitted for parallel-coupled filters, easing the tolerances and permitting a broader
bandwidth for a given dimensional tolerance. However, perhaps of greatest
significance is the fact that the first spurious response for a parallel-coupled filter
occurs at three times the center frequency of the filter, whereas for the end-coupled
filter it occurs at only twice the center frequency.

9.4.1 The coupling mechanism

Consider the simplest form of quarter-wave parallel-coupled filter illustrated in Figure
9.16. This is a zero-order filter as it has no half-wavelength resonator elements.
However, it does illustrate the coupling that takes place between the adjacent sections
of a parallel-coupled band-pass filter. When it is compared with Figure 8.1, Figure
9.16a is seen to represent a single-section directional coupler with an open-circuit
termination on both ports 2 and 3. The same circuit in a more practical form as the
basic element of a filter is shown in Figure 9.16b. The fringing capacitances at both
the open circuits and the step transitions in line width will have to be taken into
account by appropriate reductions in the line lengths.

Consider the case illustrated in Figure 9.16b. For a unit voltage incident at port
1 and a matched load terminating port 4, from (8.26) for a parallel-coupled directional
coupler

Vl =1

V2 = —j“—cz-
®

50Q

® A @
@ 1wt
INPUT
50Q
® x A4 ]
Ol 500Q |@ ®)

O]ER 1®

Figure 9.16 A quarter-wave parallel-coupled filter section drawn (a) as a basic directional
coupler, with the coupled and direct ports left open-circuited, and (b) in more practical form
as the basic element of a filter. Line length corrections for fringing capacitance are not
shown.
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V; = ¢
Vs =0 (9.20)
V, and Vj are the voltages of the waves incident onto the open-circuit terminations at

their respective ports. Now V, is reflected from the open circuit with a phase change
of 0°, giving

V, = -jV1 - &

as an incident wave at port 2. Applying an equation of the form of (9.20) to obtain
the resultant voltages at the other ports gives

Vi = -V - 2y,
= -jV1 - ¢ {—j\fl —c2} = ¢ -1
V; =0, at the new isolated port
and Vi = ¢V, = —jeV1 - & (9.21)

Equation (9.21) shows that there is no addition to the original voltage, V3, in (9.20).
Similarly, the Vj in (9.20) is reflected from its open circuit with a phase change of 0°,
giving

V3 = ¢, incident at port 3

V) = ¢V; = ¢?

V2 = 0, _ at the new isolated port
and Vo= -V - vy = —jeVl - ¢ (9.22)

Again, because the V, in (9.22) is zero, no modification to the original V, in (9.20) or
(9.21) is required. Because there is a matched load at port 4, V, does not produce any
further incident wave into port 4. Thus, for the original unit incident voltage at port 1
and for simplicity replacing the 50Q by 1Q, the following net outward powers are
obtained:

2
Port 1: l(cz— 1)+c2l
Port 2: 0
Port 3: 0
2
Port 4: I—ch\/l -c? , (9.23)

The total power out, P, is given by

[2c2 - 1]2 + lzc‘/I——cZJ2
1

P

ie. P =
the total output power being equal to the input power. Now, if ¢ = 0.707 (a 3dB
coupler design) then, from (9.23), it is seen that there is no reflected power at the
original input port and all the power is coupled through the structure to port 4. As the
input frequency is varied about the center frequency, the more general relationships
for a directional coupler (8.25) must be used and it will be found that the input port is
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50Q

500

ke AL2 |

Figure 9.17 Two microstrip coupled sections forming a first-order band-pass filter. Note
the reductions in line length to account for fringing capacitance.

no longer perfectly matched. Power reflected back to the input implies a less than
unity transmission coefficient.

Hence, with correct dimensional choice, the structure of Figure 9.16b represents
a band-pass filter where all the signal at the center frequency is transmitted with
(ideally) zero insertion loss, while at other frequencies there will be varying insertion
loss due to the loss of power by reflection at the input port.

If a 2-section filter, Figure 9.17, is constructed so that the output from port 4
becomes the input to the second section, then it is seen that a half-wavelength
resonator section with quarter-wave coupling at each end is obtained. While it is
possible to obtain a matched band-pass filter by cascading two identical 3dB coupler
sections in this manner, it turns out that other coupling ratios are also suitable, since
the mismatch reflections will tend to cancel out at the center frequency. Even more
generally, the condition Zy, Zy, = Zg for each filter section need not apply. In
principle, it should be possible to design a band-pass filter with a desired 3dB
bandwidth by appropriately selecting the mismatch reflections for each section. An
introduction to the design of band-pass filters will now follow.

9.4.2 Mapping functions
By a change of variables, it is possible to transform a band-pass response into a low-
pass one and vice versa. For example, the band-pass filter response of Figure 9.18a is

a

LrT : r Lr ;

il
oy Wy Wy (‘0’1 ('o,-'.l
@ o> ®

Figure 9.18 Mapping from (a) the band-pass filter response to that of (b) the low-pass
prototype circuit ‘

i
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Figure 9.19 Lumped-element transformations from low-pass to band-pass circuits

exactly mapped to the low-pass prototype circuit, Figure 9.18b, by the variable
transformation

o Lo %
] Qo o (9.24)

with @y = V@, 0; and where Q = (0, - ®,)/ @, is the fractional bandwidth of the
band-pass filter. When © = o, or ®, in (9.24) then @'/ ] = 1, ie. the band-edge
frequencies ®; and ®, map to the low-pass frequency ', where the attenuation is
either 3dB for the maximally-flat filter or the maximum pass-band ripple for a
Chebyshev response. In terms of circuit components, the transformation in (9.24) is
equivalent to transforming an inductance in the low-pass case to a series-resonant
circuit in the band-pass case. Similarly, a low-pass capacitance becomes a parallel-
resonant circuit, Figure 9.19,

The required series- and parallel-resonant sections in practical microstrip band-
pass filters will be formed from transmission line resonators to simulate the
performance of ideal resonators near resonance. Now it is a basic property of a
transmission line resonator that multiple resonances exist, resulting in additional
higher frequency pass-bands that are not predicted by the circuit of Figure 9.19a. For
broadband filter design, it is necessary to use mapping functions that predict more
accurately the frequency response [9.1]. However, practical limitations in the amount
of coupling that can be achieved between microstrip resonators mean that only
bandwidths up to about 15% may be realized and, consequently, narrowband
approximations are valid. Very narrowband filter responses may also not be practical,
but in this case it is the transmission line losses that will distort the response.

Consider a symmetrical band-pass filter where in the narrowband case

0, = W) + Wy
2 (9.25)

The mapping function (9.24), although not predicting multiple resonances, becomes
an acceptable narrowband approximation with

o o2 [_“’ — %
o) Q| (926)

This approximation is most accurate for small frequency deviations from w but
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2 odd)
4 -l
I i
o— J o o— o
+ % = YT =]
O radian [© ° °

Figure 9.20 The equivalence between the immittance inverter and a transmission line that
is an odd multiple of quarter-wavelengths long

will overestimate the stop-band attenuation of the transmission line filter, Figure 9.15.
because the low-pass prototype does not model the higher frequency pass bands.

9.4.3 Resonators and immittance inverters

The elements of a prototype low-pass filter are alternating series inductance and shunt
capacitance that transform to the series and parallel L-C resonant circuits for a band-
pass filter, as illustrated in Figure 9.19. However, a practical network implementation
with transmission line resonators favors the use of a tandem connection of resonators
of the same type, namely open-circuited A/2 resonant lengths of line. These
resonators are joined together through networks that possess the properties of
immittance inverters.

The ideal immittance inverter, characterized by the parameter, J, has the
properties illustrated in Figure 9.20. The inverter has the properties of a transmission
line, characteristic admittance Yy = J that is an odd-multiple of A/4 long. As a A/4
transformer, the transformation from the load to the input is given by

Zin = le Y, or Yy, = 17, (027
The phase change for a wave transmitted through the transformer is n(n/2) radian.

To understand the action of an immittance inverter in this context, consider the
variation of susceptance with frequency for series- and parallel-resonant circuits,
illustrated in Figure 9.21. From the Smith Chart, it is known that a quarter-wave

susceptance susceptance

Wg ®g

(a) parallel L-C circuit (b) series L-C circuit

Figure 9.21 The susceptance variation of parallel- and series-resonant circuits near the
resonant frequency

i
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C
RESONATOR L---{ }---- RESONATOR (a)
——— - -
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-0 ko
an(2) = - 22 5= v, tang
Yo
Figure 9.22 A series capacitance as an immittance inverter illustrated by (a) the
capacitance between the ends of microstrip resonators, and (b) the immittance inverter
equivalent circuit

length of transmission line will transform a normalized admittance to its reciprocal
value and, with Figure 9.21a representing the frequency variation of admittance about
the open-circuit value, the quarter-wave line will transform this admittance to that in
Figure 9.21b, representing the admittance variation about the short-circuit value.
Thus an immittance inverter, inserted in front of a series-resonant circuit, transforms
it into a parallel-resonant circuit and vice versa. Unfortunately it turns out that the
simple A/4 transformer is not adequate in most cases as a practical immittance
inverter, due to the limited range of characteristic impedances available in practical
microstrip lines. However, other forms of inverter exist, ¢.g. the series capacitance of
an end-gap coupled resonator, Figure 9.22, and two parallel-coupled lines that are to
be described in the next section. Each of the above may be modeled by an inverter
provided that additional line lengths are included to complete the model.

An end-coupled filter takes the form of several in-line A/2 resonators with small
capacitive coupling between adjacent resonators. The first and last resonators of the
sequence are similarly coupled to the input and output lines. Each resonator
essentially sees a high impedance at each end and may thus be modeled by a parallel-
resonant equivalent circuit, §2.2.3. The equivalent circuit of the complete structure
becomes an alternating sequence of immittance inverters, as in Figure 9.22, and
parallel-resonant circuits with the line lengths ¢ being taken care of by resonator
length adjustments. Edge-coupled filters will now be considered in greater detail
because of the advantages that they offer, as described earlier. In this case, each A/2
line functions both as a resonator and as a part of the immittance inverter.

9.4.4 Parallel-coupled lines as immittance inverters

In a microstrip line system, a pair of parallel-coupled lines with two of the ports left
open circuit may be specified by their even- and odd-mode impedances and coupling
length as illustrated in Figure 9.23a. As immittance inverters it is found, following
Jones and Bolljahn [9.8] and Cohn [9.9], that the coupled lines are equivalent to an
ideal inverter, J, together with line lengths ¢, Figure 9.23b. The value of J is
determined by Z, and Z, and may be considered substantially independent of ¢ for
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o — [— ¢
g?t?urilt ¢ — c'.— j t:lo
—o = Z, + % Zy
7o) B ° i [
(a) (b)

Figure 9.23 The equivalence between (a) parallel-coupled lines, and (b) an admittance
inverter

¢ = m/2. Conversely, if a certain J is required then the Zy, and Z, that are needed
can be determined. With narrowband approximations that are valid if ¢ = /2 and
useful for <10% bandwidths, J is assumed independent of frequency and the required
coupled-line mode impedances are given by

I

Zye

zol1 +JZO+JZZ§} (9.28)

272
and ZOO = Zo [1 - JZO +J Zol (929)
where Zj is the characteristic impedance of the input and output connecting lines to

the coupled section.

9.4.5 Band-pass filter design
Figure 9.24 illustrates the action of a parallel-coupled band-pass filter. The microstrip

[ QUTPUT
| /2 RESONATOR ]
[ /2 RESONATOR ] ; (a)
INPUT | |
P U Ao Y Ada v A
S 4 1 4 , 4 | 4 ’ 4
% J T
0 12 b
INPUT + & + & + & output (b)
2 2 2
radian U radian U, radian
(©)

Figure 9.24 A 2-section band-pass filter with edge-coupled resonators showing (a) the
microstrip layout, (b) the equivalent circuit of each A/4-long coupler, and (c) each A/2 line
now represented by an equivalent parallel-resonant circuit
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circuit, Figure 9.24a, shows two similar A/2 open-circuit terminated resonators that
are parallel coupled to each other and to the input and output lines. It is observed that
for two resonant lines there are three A/4 couplers that will have immittance inverter
properties. The complete filter is a 2-section filter using the standard terminology of
the low-pass prototype.

In Figure 9.24b, each coupler is represented by its immittance inverter and lines

UMY WS S VAR G TV S T S T SR SRS VNS S T S TG ST S N SR YN SO S S TV Y 1‘0
| W
| WO
L 0.8
06 y
\ -
0.4 A
log,o(s/h) | 3
0.2 L 0.6
0.0 N\ . I
—-0.2-
. L 0.4
-0.41 &
150 ——
100 ——
8.0——
-0.6 60—
4.0
30
25
-0.84 20
R e NI N N~ C—
0.0 0.1 0.2 0.3 04 0.5 0.6

Normalized admittance inverter value, J

Figure 9.25 The line separation and width for a single section of an edge-coupled
directional coupler matched to 509 input and output lines

s
£
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that are A/4 long at the center frequency. Adjacent A/4 lines form a A/2 resonator.
Now it is seen that the couplers not only provide the inverter function but, because of
the A/4 lines attached to the inverters, are integral parts of resonators as well. The
line lengths at the input and output ports are indistinguishable from the connecting
lines and are therefore of no further concern.

In a typical filter, the J values are such that the impedance levels through the
filter are high with respect to Zy. As a consequence, each A/2 resonator in Figure
9.24b may be represented by a parallel-resonant circuit as in Figure 9.24c (see
§2.2.3). The design problem is now the following: Given a low-pass prototype with
element values Ky, what should be the J values to realize it as an equivalent band-pass
filter using coupled lines? Cohn [9.9, 9.10] and Matthaei et al. [9.1] have shown that
the required normalized admittance inverter parameters J’ = J/Y, are

;o Q |?
Tou = [21(01(1] (930)
) 1
’ — Jtas —1 - -« ,n-1
Tieket 2 s b 8 (931)
, = |—nQ {*
Toner = [mcnx,m] (9.32)

where Kk are the low-pass prototype element values for an n-section filter and Q is
the fractional bandwidth.

The filter immittance inverters are symmetrical about the physical center of the
filter for all orders of both maximally-flat and Chebyshev filters, there being n+1
inverters and n resonant A/2 sections. Surprisingly, this is true even for a Chebyshev
filtler, with an even number of sections and Ky # Xp,;, but where nevertheless
KoX; = KnXnyp

It now remains for the immittance inverters to be converted to the even- and
odd-mode impedances for the coupled lines, and for these lines to be realized in a
microstrip configuration. Normally, available equations [9.11] provide Z¢, and Zg,
as functions of s/h and w/h, whereas for design purposes the reverse is required.
Using the quasi-static equations from [9.11], Figure 9.25 has been derived for this
book to present s/h and w/h directly in terms of normalized immittance inverter
values and with g as a parameter. ‘

Example 9.4

Design a microstrip band-pass filter with maximally-flat characteristics on a 1.5 mm
thick substrate with €, =2.5. Ignore the substrate and conductor losses. The filter
specifications are (i) center frequency = 2.0 GHz, (ii) 0.1dB passband > +50MHz, and
(iii) attenuation at 2.5GHz > 15.0dB.

Solution:

The initial design will be carried out using the normalized frequency response for
the low-pass equivalent with maximally-flat characteristics where, at the 3dB

1
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point, @) =1. Let ) and § be the frequencies for the pass- and stop-band
attenuations of 0.1dB and 15.0dB respectively. (oi, depends on the number of
sections in the filter. To satisfy the 0.1dB pass-band attenuation requirement,
then from (9.4) with 0} =1

0.1 = 1010go(1 +(wp)™™)
ie. (@)™ = 0.02329

The stop-band attenuation specification must be satisfied at g = loxwi,, at
which frequency the attenuation is calculated and compared with the required
minimum of 15dB. The results are given in Table 9.6,

Table 9.6 Results for Example 9.4

] wp wg Attenuation || Upper f345
at wg GHz

1 0.153 1.53 52 2.328

2 0.391 391 23.7 2.128

3 0.625 6.25 478 2.080

2 - 3.15 20.0 2,159

A minimum of two sections is required for the filter to achieve the stop-
band specification. For n =2, the design just meets the specification within the
pass band while it is significantly better than the specification for the stop band.
Thus the stop-band attenuation may be reduced and is chosen as 20dB. The
results are given in the final row of the table. At the same time, the theoretical
pass-band attenuation will also be reduced and is now less than 0.043dB across
the band.

The microwave band-pass filter design requires knowledge of the fractional
3dB bandwidth. Thus the upper 3dB frequency is also evaluated and is given in
the final column of the table. The low-pass prototype values for an n=2
maximally-flat filter are xy=1.0, ¥, = 1414, kp=1.414, and x3=1.0. The
fractional 3dB bandwidth, Q = (2.159 - 1.841)/2.00, i.e. Q = 0.159.

e - [ £x0.159 r
23 ~

From (9.30), I, 2x1x1414

0.420

£x0.159 . 1
2 V1.414x1414

0.177

From (9.31), J}, =

From Appendix 3, for a 50Q line, w® = 1.5x2.837 = 4.26 mm. From Figure
9.25, for J'= 0.420, logo(s/h) = —1.00 and w/w® = 0.676 giving s =0.15 mm
and w=2.88 mm. Likewise, for J'= 0.177, it is found that s =0.85 mm and
w=3.95mm. The filter layout is shown (not to scale) in Figure 9.26. The
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Figure 9.26 The line widih (w) and separation (s) for a 2-section band-pass filter on
€ =2.5 substrate, 1.5 mm thick. Line length adjustments for fringing capacitance at the
open circuits and step changes in line width have not been incorporated. (Not to scale.)

effective permitrivity, and thus the length, for each coupler is found as the
geometric mean of sé? and eé‘t’r), as derived from Appendix 4. Adjustments to the
resonator lengths for the fringing capacitance at the open circuits and step
changes in the line width will complete the design.

9.5 BAND-STOP FILTERS

An efficient band-stop filter allows most signals to pass through while only
attenuating a narrow band of frequencies. Design procedures for several types of
band-stop filter structure are given by Schiffman and Matthaei [9.12]. An
introduction to band-stop filters which builds on knowledge of parallel-coupled lines
from the previous chapter is presented here. Consider the A/2 long microstrip
resonator which is terminated at each end by open circuits. From (8.25), there will be
no coupling if the complete A/2 length is parallel-coupled to the main transmission
line. Maximum coupling to the resonator is achieved when only a A/4 length of the
resonator is parallel-coupled to the main line in a similar manner to a directional
coupler. The remaining A/4 length, at right angles here to the main line to prevent
further coupling across to it, is required if the band-stop filter is to have an open-
circuit termination at each end of the resonator. This is illustrated in Figure 9.27,

O 00 r—v o
L ——— 1 [

INPUT
T ® @

0
@l ®

Figure 9.27 Microstrip band-stop filters showing (a) the practical realization with open-
circuit terminations to the resonator, and (b) the coupled section as a resonator with one end
short-circuited

INPUT

RESONATOR

®
(a)
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where 6 will be equal to 90° at resonance. The A/4 coupled resonator with open- and
short-circuit terminations, as shown in Figure 9.27b, will now be considered for
simplicity in analysis. The effect of the additional A/4 length for the complete A/2
resonator will be noted for use as required.

Band-stop filter analysis

The band-stop filter characteristics of an ideal pair of parallel-coupled lines, Figure
9.28, that satisfy the requirements for a directional coupler in §8.2, namely

ZoeZoo = Z¢ (9.33)
are considered. In general, the electrical length of the coupled section is 8. A unit

incident voltage wave at port 1 sets up voltage waves at ports 2 and 3, with port 4
isolated. The coupling at port 3 from (8.25), including the 8 dependence, is

g - icsing
D (9.34)

where D = V1 - c2coso + jsin® (9.35)

The transmission out of port 2
N1-¢2
D (9.36)

These waves may be visualized as being in Z lines of zero length, assumed attached
to the ports of the coupler just in front of the actual termination at that port. Port 2 is
matched and will not have any input wave. Ports 3 and 4 are terminated by an open
circuit and a short circuit respectively and will both reflect waves back into the
coupling region.

Let the total input waves at ports 3 and 4 be u and v respectively. The values of
u and v are still to be calculated from the boundary conditions. These input waves
and their transmitted and coupled components are illustrated in Figure 9.28.
Applying the boundary condition for a short circuit at port 4

t =

v+ut = 0 = v = —ut (9.37)
and for an open circuit at port 3
u =d+vt = d-u? (9.38)
SOURCE =1
p—— 8 5+ 46— MATCHED LOAD
1—» —1
ud +—1(D THROUGH LINE ®
—vd
d — -y
u———e RESONATOR ———p Ut
Vi -—— @ @
OPEN SHORT
CIRCUIT CIRCUIT

Figure 9.28 Voltage waves in zero-length Z; lines attached to the ends of the coupled lines
of the band-stop filter of Figure 9.27b
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Therefore u = -13—@-, vV = —li_ttz (939)
The voltage reflection coefficient at port 1
2

r-w- 3 (9.40)

The voltage transmission coefficient through to port 2
d2

T =t+wvd =[[l_1+t2] (9.41)
When 0 = 1/2 and the coupled length is A/4, then

d=c¢ ad t=-jVI - ¢ (9.42)
giving, from (9.39)

=L ad v-= +j——l;£2- (9.43)

C C b

Now from (9.40) and (9.41), the reflection and transmission coefficients are I'= 1 and
T = 0 as required at the center frequency of an ideal band-stop filter.

The filter bandwidth
Consider the case where 0 = % + A0, so that sin® = cosAB and cos® = —sinA©.
From (9.34) to (9.36)

D = -V1 — ¢ZsinA® + jcosAB
jCcosAD V1 - ¢?
and d = D o t= Ty (9.44)

The 3dB bandwidth will be determined by the conditions |T'|2 = |T|? = 4, i.e. half
of the incident power is reflected and half is transmitted to the load. Substituting for
d and t from (9.44) into (9.40), it follows (see Exercise 9.11) that
l lz _ c*cos?Al
T 4(1 - c??sin?A8 + ¢*cos?AB (9.45)

For |T'|? = 4, then

4(1-c??sin?A8 = c*cos’AB (9.46)
This equation may be solved exactly for sin?A8. However, for narrowband filters,
from (9.46), A0 <« 1 => € <« land

A0 = (402 = £

Sumas = 4 (9.47)
For the full bandwidth, 248 = c¢2. Hence the quality factor of the filter, defined as
the ratio of the resonant frequency to the 3dB bandwidth for a filter exhibiting a
single resonance, is given by

Q=% - @2 _ =n

Af 2A0 2¢2 (9.48)
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The analysis for the structure in Figure 9.27a follows the same steps, except that
(9.37) is rewritten by applying the boundary condition at the open circuit at port 4 and
transferring the terms back to the port 4 end of the coupled section. Thus (9.37) now
becomes

v = ut(cos28 —jsin20) (9.49)

This equation reduces to (9.37) at resonance when 6 = /2.

Example 9.5

The band-stop filter in Figure 9.27b is constructed with line dimensions as for a 13dB
directional coupler. Calculate the 3dB bandwidth from an exact solution of (9.46), if
the center frequency is 2.0GHz. Compare with the approximate result given by
(9.48).

Solution:
For a 13dB coupler, ¢ = 0.2239. Thus (9.46) becomes
3.61sin2A8 = 0.002512(1 - stAe)
With s = sin?A8
0.002512s2 — 3.6091 s + 0.002512 = 0

Solving for s, taking the solution where s < 1 gives s=0.000695, ie.
sinA® = A6 = Vs = 0.0264. This compares favorably with the approximate
value of 0.0251 given from (9.47). The 3dB bandwidth at 2.0GHz
2A8 2x0.0264
xf, = S—==-x2 GHz
r/2) "0 (x/2)
ie. Af = 67MHz

Resonator losses in a practical filter include conductor and dielectric losses,
as well as radiation losses from the open-circuit terminations. These losses have
most effect on the performance of narrowband filters where they will (i) increase
the filter 3dB bandwidth, (ii) reduce the magnitude of the reflected signal at
resonance, and (iii) reduce the band-stop attenuation at resonance.

EXERCISES

9.1 i) Calculate the 3dB frequency for a S-section low-pass filter with maximally-flat
characteristics that has a 0.2dB attenuation at 1.0GHz.
ii) Repeat for a Chebyshev response with a 0.2dB passband ripple and 30dB attenuation at
1.0GHz.
9.2 Repeat Exercise 9.1 for a high-pass filter.
9.3 Repeat Exercise 9.1 for a band-pass filter with 1.0GHz replaced by 10.0 + 1.0GHz.
9.4 Sketch the microstrip layout for Exercise 9.1(i), using a 1.5 mm thick, & = 2.5 substrate and
20£2 and 15022 lines.
9.5 Calculate the reflection coefficient at low frequencies for a Chebyshev low-pass filter with a
0.6dB ripple, having (i) two sections and (ii) three sections.

9.6

9.7

9.8
9.9

9.10

9.11

9.12

9.13

[9.1]
[9.2]
[9.3]

[9.4]
[9.5]
{9.6]

9.7}
[9.8}
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Consider the circuit in Figure 9.16. Describe its behavior:

i)  when port 3 has a short-circuit termination and port 2 remains open circuit,

ii) when both ports 2 and 3 have short-circuit terminations.

For the circuit illustrated in Figure 9.16 with the line parameters giving 3dB coupling, calculate
the filter response as a function of frequency. In particular, determine the bandwidth of the
filter.

Repeat Exercise 9.7 with the central coupling section being as for a 15dB directional coupler.
Determine the scattering parameters at resonance of the circuit shown below, in which two
sections with 15dB coupling as in Exercise 9.8 are cascaded.

50Q

L ]
{s0a ]

Assuming lossless and zero thickness lines, calculate the resonant frequency and 3dB
bandwidth for the circuit illustrated below, with the parameters w/h as for a 50Q line, £, = 2.5,
s/w=0.1,h=1.5mm, and / = 50 mm = A/2 at the center frequency.

P el R
Lw I ] }
'
i) For the band-stop filter illustrated in Figure 9.27b, derive the expression for | I |2

in (9.45).
ii) Derive the corresponding expression for | T |2 and check that

ITI?+ |[T]? =1

i)  Show how a band-stop filter may be constructed using a pair of identical band-pass filters,
two matched loads and a 3dB quadrature coupler.

ii} Repeat part (i), but with a 3dB, 180° hybrid coupler.

Compute all the critical dimensions for the band-stop filter shown in Figure 9.27b. The filter

has 3dB frequencies of 2.0GHz + 20MHz and S0Q connecting lines. It is to be constructed on

a substrate with €, = 2.5, h= 1.5 mm.
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Miscellaneous
components

10.1 INTRODUCTION

A selection of circuit elements and components that do not fit readily into the contents
of other chapters is presented here. In §10.2, transitions between microstrip and other
types of transmission lines are described. Not only are these transitions used at an
interface between microsirip lines and the outside environment but also, in the case of
slot lines, as a part of the circuit in the microstrip structure. Microstrip antennas are
also basically a transition between propagation media. Here, only the important
resonant patch antenna, from a choice of many antenna designs, is discussed in §10.7.

Lumped components, L, C and R, in §10.3 have a wide variety of uses, e.g. in
matching techniques, as feedback elements in amplifiers and oscillators and in bias
networks and filters. In §10.4, we consider power dividers for use as power splitting
elements in antenna arrays and for the inputs to parallel high-power amplifiers, as
well as their use as power combiners at the outputs of such amplifiers.

Microstrip resonators, fabricated as lines forming a part of the microstrip circuit,
are a fundamental part of Chapter 9. Another type of resonator is the dielectric
resonator, §10.6, generally implemented as a loosely coupled element above the
microstrip line. This type has applications in high-Q filters and stable oscillator
design. Other resonant modes, this time in a ferite disc that replaces a part of the
substrate itself, are important in the understanding of the non-reciprocal performance
of circulators considered in §10.5.

10.2 LAUNCHING TECHNIQUES

With microwave subsystems being constructed using microstrip lines, it may be
necessary to interface to other forms of transmission line, either for measurement
purposes or for overall system design, as for example, for connection to an antenna.
It is typical to use coaxial connections below about 5GHz, waveguide connections
above 20GHz and either type of line in the intermediate frequency range. Basic
transitions to coplanar lines are also included for completeness, in particular to slot
line and coplanar waveguide, see e.g. Gupta et al. [10.1], even though these lines are
otherwise beyond the scope of this book. The detailed design of any transition to a
microstrip line will necessarily depend on such parameters as frequency, bandwidth,
line impedances and substrate properties, leading to a variety of designs. In the
following sections, typical structures are illustrated.

'
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/ SOLDER / STRIP
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GROUND PLANE

Figure 10.1 A coaxial to microstrip connection through the ground plane

10.2.1 Coaxial line to microstrip transition

The design illustrated in Figure 10.1 is a low frequency design that is only suitable
below about 2GHz using low permittivity (€; < 2.6) substrate materials. It may also
be used as a coaxial feed to a microstrip antenna element, described in §10.7. The
coaxial line is fed through the ground plane and substrate material and the inner
conductor is soldered directly to the microstrip line. With the coaxial connector
firmly attached to the ground plane, good electrical contact is maintained with the
ground conductor.

For operating frequencies above 1GHz, it is preferable to use the method of
England [10.2] illustrated in Figure 10.2. The field variations through the transition
are smoother than for the previous design. This is particularly so when the microstrip
line is fabricated on 0.5 mm sapphire substrate. Coaxial connectors that have small
tags, or continuations of the circular center conductor beyond the face of the body of
the connector, are attached to the microstrip line with either a pressure contact or a
solder joint. Specialized equipment may be required to determine the precise
dimensions associated with this termination if reflection coefficients less than 0.01 are
to be achieved. However, the following general precautions should be noted:

i) Avoid a mechanical design that may destroy the extension of the coaxial line
center conductor.

i) Maintain good electrical contact at the points where the microstrip ground plane
contacts the inner circumference of the outer conductor of the coaxial line.

iii) Reduce the capacitance of the center conductor and microstrip line in the vicinity
of the transition, since it is in this region that there is generally excess capacitance
due to the fringing fields from the coaxial line center conductor to the microstrip
ground plane and from the microstrip line to the body of the coaxial connector.
The capacitance is reduced by tapering the width of the microstrip line so that it
is no wider at the edge of the substrate than the width of the pin from the coaxial

line.
/ STRIP

|
S SSSSSSSSNSNSSNNA

\ GOOD CONTACT

Figure 10.2 An edge-feed coaxial to microstrip connection, from England [10.2]
(© 1976, IEEE)
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Figure 10.3 A rectangular waveguide to microstrip transition, from Van Heuven [10.4]
(© 1976, IEEE)

10.2.2 Rectangular waveguide to microstrip transition

Some waveguide to microstrip transitions may be regarded as a combination of a
waveguide to coaxial transition followed by coaxial to microstrip transition, with the
coaxial section often approaching a zero length. Such designs are not illustrated here.
However, there are two designs which make use of the actual field distributions in the
waveguide and microstrip lines. In the first design by Schneider et al. [10.3],
illustrated in Figure 10.3, several dimensions are critical for good performance.

The rectangular waveguide is transformed through a series of quarter-wave
transformers to a ridge waveguide, where the final ridge section is separated from the
opposite plane face by the microstrip substrate material. In this design, it is necessary
to maintain good electrical contact between the ground plane and waveguide wall, as
well as between the ridge and the microstrip line. There is still an abrupt
discontinuity at the end of the waveguide, even though the transition has effectively
modified the waveguide fields to match those of the microstrip line under the strip
itself.

A second design for 18-26GHz by Van Heuven [10.4] transforms the
waveguide through a parallel plate structure and balun to the microstrip line. This
design has the advantage that the transition structure may be fabricated as a part of the
microstrip circuit.

10.2.3 Microstrip to slot-line transition

The slot line for microwave transmission [10.5] may be used in conjunction with
microstrip lines to give a greater flexibility in component and system design (€.g. see
[10.6]). Only the basic transition design is presented here.

Refer to Figure 10.4a and consider a microstrip line with a short circuit
termination through the substrate to the ground plane. Further, consider a narrow slot
in the ground plane, passing at right angles under the microstrip line and adjacent to
the short circuit. For an input signal along the microstrip line, an electric field will be
excited at right angles to the direction of the slot, setting up a guided wave that will
propagate in both directions along the slot line. If the impedance looking in one
direction along the slot line appears as an open circuit at the plane of the microstrip
transition, then there will be a net signal propagating in the other direction. For low
reflections from the transition, the characteristic impedances of the slot line and
microstrip line must be equal. On any given substrate, the effective permittivity for a

i
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Figure 10.4 The microstrip to slot-line transitions, where solid lines represent the
microstrip circuits and the dashed lines show the extent of the siots in the ground piane

microstrip line will be greater than for the slot line, since with the slot line a greater
percentage of the electromagnetic energy flows outside the substrate.

The basic transition in Figure 10.4b is formed using A/4 lines in conjunction
with terminations that are easiest to fabricate, namely a microstrip open circuit and a
slot-line short circuit. The difference in physical lengths of the A/4 lines is due to the
difference in effective permittivities. Broader bandwidth designs that continue to be
easy to fabricate, Figure 10.4c, use circular or radial elements to give the required
junction impedances [10.7].

10.2.4 Microstrip to coplanar waveguide transition
A coplanar waveguide has three paraliel conductors in the one plane, with the two
outer conductors as a ground plane that ideally extends out to infinity. The TEM-
mode of propagation in a coplanar waveguide has electric field lines from the center
conductor to ground and magnetic field lines around the center conductor.

In the transition by Riaziat et al. [10.8), illustrated in Figure 10.5, the strip of the
microstrip line continues through to become the central conductor of the coplanar

MICROSTRIP
LINE
g
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WAVEGUIDE

= CONNECTION
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Figure 10.5 A microstrip to coplanar waveguide transition, from Riaziat et al. [10.8]
(Reprinted with permission of Microwave Journal, from the June 1987 issue, © 1987 Horizon
House, Inc.)
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waveguide. Ground conductor symmetry must be maintained at all planes along the
transition to avoid setting up parallel-plate modes and unwanted higher-order modes
in the coplanar waveguide. Suppression of the microstrip mode beyond the transition
region is achieved by using plated-through holes between the upper and lower ground
planes. These connections effectively short out any normal component of electric
field and will aid the current flow between the two configurations of the ground plane.
The microstrip ground plane may also be tapered away from the center line to leave a
true coplanar waveguide.

10.3 LUMPED COMPONENTS

Circuits built with microstrip components can be extremely bulky at the jower
microwave frequencies. To rteduce the size of the complete circuit, it may be
preferable to use lumped L and C components. An alternative view is to observe that
for a given physical area, a greater range of component values is possible with
lumped components. A similar physical size constraint manifests itself also at higher
microwave frequencies in monolithic microwave integrated circuits (MMICs) where,
with microstrip structures, too great an area of GaAs substrate would be required and
lumped components could be preferred.

Whether a structure may be represented by a lumped equivalent circuit is
determined by its physical size in relation to the wavelength. The key equation to
consider in this context is again (3.26). In Chapter 3 it was shown that (3.26) reduces
to Laplace’s Equation when the physical dimensions of the component are very much
less than a wavelength. The behavior of the component may then be properly
described by a lumped L, C or R, as the case may be. In practice, the dimensions
should be less than A/20 {10.9].

An advantage of lumped elements is that their use facilitates the achievement of
broadband designs, since they present equivalent circuits that are not frequency
dependent, in contrast with fixed length transmission line sections. On the other
hand, when lumped elements are used at frequencies approaching the limit of their
applicability, the simple L, C or R equivalent has to be modified by the inclusion of
parasitic elements. Pettenpaul et al. {10.10] found that several formulae were needed
for an accurate component description that included all parasitic effects. Another
disadvantage of lumped elements is that they may require more processing steps in
manufacture: e.g. capacitors may require dielectric overlays, spiral inductors may
require cross-over paths. The lumped elements may come in film form, deposited on
the dielectric substrate, or as chip components [10.11] to be attached to the circuit, as
in non-monolithic (i.e. hybrid) microwave integrated circuits (MICs).

Lumped capacitors are illustrated in Figure 10.6. The interdigital capacitor,
Figure 10.6a, relies on the strip-to-strip capacitance of parallel conducting fingers on
a substrate, with the capacitance of a number of finger pairs combined in parallel.
Larger capacitances can be obtained with the overlay structure in Figure 10.6b, but at
the expense of additional processing steps. For by-pass and coupling capacitors, even
larger capacitance values are often required. These can be achieved with the chip
capacitor shown in Figure 10.6c. There is the possibility of two ways of mounting
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Figure 10.6 A capacitor as a discrete circuit element with (a) a plan view of an interdigital
capacitor, (b) a cross-section of an overlay capacitor, and (c) a chip capacitor

chip capacitors: either as shown in Figure 10.6¢ or with the chip rotated by 90°, so as
to have the capacitor plates at right angles to the substrate. As shown in Figure 10.6c,
a chip capacitor can be analyzed [10.12] as a folded transmission line with periodic
discontinuities at the folds, leading to muiltiple periodic resonances at higher
frequencies. The latter orientation mentioned above eliminates some of the
resonances [10.12].

A simple ribbon inductor is identical to a short length of high impedance
microstrip line which has been discussed in earlier chapters. For such an inductor,
the inductance is proportional to length and larger inductances are obtained by
bending the strip in a meander line or a loop as illustrated in Figure 10.7a and b.
Unfortunately, mutual coupling has now to be taken into account and behavior as a
simple inductor is lost, especially if the strips are relatively close together. Much
larger inductances are obtained by inductive loops, either square as in Figure 10.7c, or
circular, but parasitic effects are now much more pronounced. Spiral inductors with

(@ b)

B

||E|] ©
UNDER-PASS 1
CONNECTION/ u
Figure 10.7 Inductors as discrete components constructed with (a) a meander line, (b) a
single loop, and (c) a (square) spiral
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the turns on top of each other and separated by dielectric spacers also come in the
chip form {10.11].

Lumped resistors are required for biasing active circuits and as terminations for
certain ports in multi-port devices, such as directional couplers and the power splitters
of §10.4.

Several approximate formulae for inductance and capacitance values of lumped
components are available, e.g. in [10.13, 10.14], while more elaborate formulations
are quoted, e.g. in [10.9, 10.15], together with experimental results {10.9]. A very
detailed treatment that is suitable for computer-aided design is to be found in (10.10].

10.4 POWER DIVIDERS AND COMBINERS

An n-way hybrid power divider with in-phase outputs was originally described by
Wilkinson {10.16]. The basic 2-way divider, and some of the techniques for
increasing its useful bandwidth, will be described here. Being a reciprocal device, it
may also be used as a low-loss power combiner of identical signals, such as may
result in an antenna array or from the outputs of a pair of parallel-connected ransistor
power amplifiers.

Consider the circuit configuration shown in Figure 10.8. The circuit is a four-
port network where one of the ports is permanently terminated by a resistor, R. With
the correct value for this resistor, the network can be matched for incident waves at
all the other ports. In the circuit design, the two Z lines are kept apart so that there is
negligible edge coupling between them. However, they must be brought close
together again at plane B where port 4 is terminated with a resistor.

At the junction A, the two output lines appear in parallel with a common voltage
applied to each of them. There will be a good input match and equal power division
if the input impedance of the individual output networks at A is 100Q. The lines
from A to B are A/4 transformers that transform the 50 load impedances at ports 2
and 3 to the 100Q2 required at the input. Thus Z =70.7€Q. With identical potentials
at all times on each terminal of the resistor at B, there will be no power loss within the
resistor. The resistor value does not influence the input match as seen at port 1.
However, its value is important if minimal reflections are also desired for any signal
that may enter the divider from ports 2 or 3.

Z;=1707Q s0Q
ISOLATION
RESISTOR
R=100Q
Z;=707Q ; 50Q
A - ®

'B

Figure 10.8 An equal-split power divider
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Consider feeding in an input signal, balanced with respect to the ground plane,
at the resistor port (port 4), but without the resistor present. By symmetry, there will
be no output voltage at A and thus at port 1. This zero voltage at A will transform via
the A/4 transformers to zero currents at B, Exercise 1.10, so that the two lines to the
left of B present open circuits to port 4. Ports 2 and 3 appear in series across port 4
and, since the ground plane is at the center point of the series combination, the two
output signals will be out-of-phase. The input impedance for a signal applied to port
4 is the series combination of 2x 50Q, i.e. 100Q. Thus port 4 must be terminated by
this impedance if, by reciprocity, there are to be no reflections for two equal-
magnitude out-of-phase signals when they are fed into ports 2 and 3. Hence,

R = 100€. Since arbitrary inputs into poris 2 and 3 may be regarded as the sum of MAX. V.S.W.R. AT PORT 1 = 1.106 ®
airs of in-phase an ' of-phase signals, and since the in-phase signals will see MAX_ V.SW.R ATPORTS 2AND 3~ 1021
p phase and out-of-phase signais, anc 3 e n-p £ MIN. ISOLATION BETWEEN PORTS 2 AND 3 = 27.3dB

perfect matches at ports 2 and 3 for any value of R, R= 100Q will thus provide

in : i LOWER FREQUENCY, f £+ £
matching for any signals into ports 2 and 3. UPPER FREQUENCY, f; } CENTER FREQUENCY, fo = - 5
The resistive termination on port 4 serves also to isolate the two output ports so FREQUENCY RANGE, (f,/f;) =2

that, for example, an input at port 2 will not produce any output at port 3. Again, this
is easiest to see in terms of the reciprocity principle. If two equal power input signals
are fed into ports 1 and 4 with a phase relationship that gives a sum output at port 2

Figure 10.10 A broadband equal-split power divider, from Cohn [10.18] (® 1968, IEEE)

and zero output at port 3 then, by reciprocity, an input at port 2 will give equal where it is seen that in the special case of equal power split, the two output
outputs at port 1 and into the resistor at port 4, leaving port 3 isolated. This has also transformers, Zo4 and Zys are not required (being 509), Zip=Zp =595 Q, but a
been referred to, in terms of scattering parameters, in Exercise 2.7. When the circuit wransformer on the input line is required with Zg =420Q.
in Figure 10.8 is used as a power combiner, the in-phase components of two input Cohn [10.18], with an even- and odd-mode analysis that allows for more than
signals at ports 2 and 3 appear at port 1, while the out-of-phase components are one fixed resistor, shows how the network for equal-power division can be improved
dissipated in the isolation resistor. further. The analysis uses Chebyshev polynomials to give an equi-ripple V.S.W.R.
1t is seen in the foregoing discussion that there are even- Of odd-mode outputs for each port across the pass band. The circuit design for a 2-section divider that has
depending on whether port 1 or 4 is used for the input. Parad and Moynihan {10.17] an octave bandwidth is shown in Figure 10.10.

used an even- and odd-mode analysis to determine the line impedances that are
required for an arbitrary power division and with an increased bandwidth compared

with the basic design in Figure 10.8. Their results are summarized in Figure 10.9, 10.5 CIRCULATORS
A microstrip Y-junction circulator, illustrated in Figure 10.11, has three identical
Zy Zg Za ports. At the junction where the lines meet, there is a non-reciprocal element formed
I 1 from ferrite material biased by a d.c. magnetic field. Power through the circulator
Zo Zot ? ® flows in accordance with the port sequence: 1 = 2 = 3 — 1. Thus the scattering
R parameter matrix (magnitudes only) for the ideal circulator is
© L = = 010

: [s]=1]001
L———e L 0 ! 4 @ 100 (10.1)

POWERATPORT3 _ g2 Zy = Zo [ K ]”4 Zo = ZoVK Typical performance figures for a practical circu1.at0r are input VSWR < 1.2, insertion

POWER AT PORT 2 1+K? loss < 0.5dB and isolation > 20dB over a wide frequency range, say an octave

CENTER FREQUENCY Zp = ZoK(1 + KA Zos = Zo baqdwidlh: The cir.culator may be used as an ’isolator then one of the ports, say port

AT 0=90° VK 3, is terminated with a match load. As an isolator, it may be used as a constant

o, 1+K? L, (eKHM impedance load for output impedance sensitive devices since the input impedance to

R=Z"g Zog = 2o~ gsia the circulator is now insensitive to the jmpedance attached to the through port (see
Figure 10.9 Design equations for an improved split-tee power divider, from Parad and Exercise 10.2).

Moynihan [10.17] (© 1965, IEEE) At the junction where the three symmetrical microstrip lines meet, 2

1
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Figure 10.11 A symmetrical three-port junction circulator

transversely magnetized ferrite disc, with a d.c. magnetic field applied along the axis
of the disc, replaces the normal substrate material. Fay and Comstock [10.19]
describe in detail how a resonant field configuration may exist within the disc in the
absence of an applied magnetic field. The fields of the resonant mode, shown in
Figure 10.12a, may be pictured as the standing wave pattem generated by two
contra-rotating waves. Each rotating wave is itself a resonant mode, with the wave
being in-phase with itself after one complete revolution. For an input wave at port 1,
part of the wave will be reflected at that port and there will be equal magnitude
transmitted waves to ports 2 and 3.

A d.c. magnetic field is applied to the ferrite material which now exhibits a
tensor permeability. The two contra-rotating waves will have different phase
coefficients and thus the resonant frequencies of the two rotating modes are separated.
The circulator is operated at a frequency between the two resonant modes, where the

SOLATED

MICROWAVE
H - FIELDS

® ® E-FIELDS

Figure 10.12 The dipolar mode of a ferrite disc, with (a) no d.c. applied magnetic field, and
(b) with an applied d.c. magnetic field rotating the mode to isolate port 3, from Fay and
Comstock {10.19] (© 1965, IEEE)
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higher- (lower-) frequency resonant mode will have an inductive- (capacitive-)
reactance component at the input. This results in a non-zero phase difference between
the electric and magnetic fields for each rotating wave at the input, port 1. For one of
the waves, the electric field leads the magnetic field (say by 30°) while for the other
wave it lags by the same amount. Thus the electric field associated with the standing
wave formed by the two rotating modes no longer coincides with the input port, but is
moved 30° away. In effect, the standing wave pattern in the disc has been rotated,
such that there is a null electric field component at (and no transverse magnetic field
with respect to) the isolated port. A simplified view of this situation is shown in
Figure 10.12b.

Effective coupling between the individual ports and the ferrite disc for a
broadband, low loaded-Q, circulator involves a transformation from the 50Q lineto a
lower impedance at the disc perimeter. This increases the coupling to the resonator
and is achieved with a quarter-wave transformer as shown in Figure 10.11 or with a
section of tapered line.

10.6 DIELECTRIC RESONATORS

Microstrip line filters with band-pass and band-stop characteristics were described in
Chapter 9. In those filters, the basic resonator element was a A/2 length of
transmission line with an open-circuit termination at each end. In this section, the
resonant lengths of microstrip line are replaced by high-permittivity, low-loss,
dielectric resonators that improve the filter characteristics by:
i) reducing the physical dimensions of the filter,
ii) avoiding the problems associated with unequal even- and odd-mode phase
velocities for coupled lines,

iii) improving the temperature stability with appropriate dielectric materials,
iv) achieving narrowband characteristics while maintaining a low insertion loss.
To achieve a narrowband characteristic for a band-pass filter, there must be a resonant
circuit that is able to store electromagnetic fields with a minimum of loss of energy
within the resonator, ie. a cavity with a high unloaded quality factor, Qy. By
definition (see e.g. [10.20])
Q, = total energy stored

U 7 energy dissipated per radian |, rconance (10.2)

This is the most general definition of Q. For the special case of a single resonance, Q
becomes the reciprocal of the fractional bandwidth, as in (9.48). The energy
dissipation is internal to the composite resonator structure for Q calculations and
may include contributions to the loss from the electric fields in the resonator and
lossy substrate and the current fiow in the ground plane. The external Q; Qg, is
calculated in terms of the energy dissipation extemal to the composite resonator
structure and is generally determined by all the coupling mechanisms from the feed
lines into and out of the resonator. The loaded Q, Q, takes into account all causes of
energy dissipation and is given by

1 _ 1,1

Q Q Qe (10.3)
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Figure 10.13 Magnetic field coupling between a cylindrical dielectric resonator in the
circular symmetric TE,. mode and a microstrip line

CUlar C i

microstrip line

ground plane

With a low-loss dielectric material forming a resonator that contains the majority of
the stored energy, Qy = (tan8)~L. If Qy is sufficiently high, then Q, is almost entirely
determined by the coupling factors between the outside environment and the
resonator.

The general measurement of Q is described in microwave terms by Sucher
[10.21] while the determination of Q, specific to the use of dielectric resonators with
microstrip lines, is given by Khanna and Garault [10.22].

Dielectric resonators for microstrip circuits take the form of short lengths of
circular or square cross-section dielectric waveguide, with the cross-section placed
either on or parallel to the substrate. The situation where the resonator is separated
from the substrate by a low-loss, low permittivity, spacer is illustrated in Figure
10.13. As with all transmission line and waveguide resonators there will be an
infinite set of resonant modes, each having a resonant frequency that depends on the
geometry. The lowest order circular-symmetric mode (TEg,y) in a circular cross-
section resonator is normally used. This mode is the one that is illustrated in Figure
10.13, where it is seen that the electric fields are parallel to the substrate surface and
that the magnetic field pattern for the resonant mode has components that are suitable
for coupling to the magnetic fields of the TEM wave on the microstrip line.

The resonant frequency is influenced by many parameters that include the
geometry and permittivity of the resonator, the dielectric spacer (if present) and the
substrate, as well as the proximity of the ground plane and shielding enclosures that
may be required to prevent radiation from the high intensity fields in the unshielded
resonator.

Measurements by Day [10.23] on various TiO;, € =85, resonators on
0.635 mm alumina substrate are shown in the form of a mode chart in Figure 10.14.
The usefulness of this mode chart is limited by the fact that normally (D/L)? > 2.5 for
small height resonators, where D and L are as defined in Figure 10.13. It does,
however, show that the TE;;; mode of Figure 10.13 has the lowest resonant
frequency when (D/LY? > 1.86. For any other resonator material, with a relative
permittivity €;, the mode chart may be used in conjunction with

1
= &
fr = fr[er] (10.4)
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Figure 10.14 Cylindrical dielectric resonator design chart, based on results for &, =85
discs on 0.635 mm alumina substrate, from Day {10.23] (© 1970, IEEE). The resonant

frequency is f;.

to give an initial estimate of the resonant frequency, f7.

Temperature stability

The selection of low-loss compound ceramic materials, typically Bay,TinOp, by
Tsironis [10.24] has given extremely stable dielectric resonators. These materials
exhibit either a near-zero temperature coefficient or a small negative value for f; that
compensates for any positive coefficient changes associated with the energy stored in
the substrate. The unloaded Q may be increased for these resonators by separating
them from the substrate with a low-loss dielectric spacer, such as quartz with
£, =3.8. The spacer causes a reduction in the magnitude of the fringing magnetic
fields at the ground plane, resulting in lower attenuation from the induced currents
that flow in the imperfect conductors.

Coupling mechanisms

Magnetic flux coupling between a microstrip line and a dielectric resonator has been
illustrated in Figure 10.13. The coupling increases as the strip is brought closer to the
resonator. Further coupling may be achieved by exciting the resonator with a pair of
lines that are anti-phase driven, Figure 10.15a. This has been used by Iveland [10.25]
as the coupling mechanism for end elements of a series of resonators that form a
band-pass filter. Basic band-pass structures are given with the coupling methods in
Figure 10.15, (b) and (c), the latter being analyzed in detail by Bonetti and Atia,
[10.26]. Podcameni and Conrado [10.27] used the configuration in Figure 10.15d
together with other variations in the design of band-pass and reflection (band-stop)
filters. With this structure, the transmission coefficient between input and output may
be varied with a change in the position, 8, of the dielectric resonator. Maximum
transmission is achieved when € = 90°.

Tuning mechanisms

A conducting surface placed within the fringing fields above the dielectric resonator
will increase the resonant frequency. The conducting surface may be in the form of a
plate attached to a screw inserted through a shielding cover plate. The adverse
thermal characteristics of this technique on the resonant frequency were reduced by

1
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Figure 10.15 Coupling structures from microstrip lines to dielectric resonators. (a)
Coupling to the end element of a series of resonators, from Iveland [10"25] (© 1971, IEEE),
(b) and (c) single-section band-pass filters, e.g. from Bonetti and Atia [10.26] (© 1981,
IEEE), and (d) variable coupling band-pass filter, from Podcameni and Conrado [10.27]
(© 1985, IEEE).

Shimoda et al. [10.28] by attaching a further low permittivity dielectric spacer above
the main resonator element. Only weak fringing fields will exist at the upper surface
of this spacer, which is coated with a conducting film. As the conductor is etched
away from the center of the covering disc, the resonant frequency of the composite
structure is decreased.

10.7 MICROSTRIP ANTENNAS

The ability to construct antennas on the same substrate as other microstrip
components provides for a simple low-profile structure for radiating elements. All
forms of radiating structures fabricated on a substrate over a ground plane may be
classed as microstrip antennas. However, the discussion here will focus on a
particular type that is also known as a patch antenna. The importance of selecting the
circuit dimensions and substrate parameters in such a way as to minimize radiation
and all other unwanted modes of propagation was stressed in the design of microstrip
circuits, in §4.5. For a microstrip antenna, on the other hand, these radiation effects
are to be enhanced.

For radiation away from the antenna, there will be no shielding cover plate and
hence no problems associated with waveguide cavity modes in an enclosed structure.
For enhanced radiation, the following design approaches are employed:

i) Broad low impedance lines are used.

ii) The substrate height is increased and low permittivity substrate materials are
used. Unfortunately, these conditions tend to enhance the coupling to surface
wave modes and thus care must be exercised to ensure that the design remains
within the surface-wave mode limitations.
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Figure 10.16 (a) The microstrip rectangular-patch antenna, (b) the electric field distribution
under the patch, and (c) a typical radiation pattern for the patch near resonance

iti) Resonant elements are used to increase the field strengths at open-circuit planes
from which radiation will occur.

A resonant length of very low impedance line, fed directly from a microstrip
line, is illustrated in Figure 10.16a. This is an efficient structure in terms of the
amount of power that may be radiated from a given area. The actual radiation
emanates from the edges A and B. After making an allowance in the length of the line
for the fringing fields from the open-circuit plane A, and from plane B where the large
impedance mismatch also appears as an approximate open circuit, the overall
resonator length is A/2, where A is the wavelength in the wide microstrip line.

Consider the typical values of g = 2.0 and A = 0.7 Ag. The contributions from .
sources at A and B to the fields at a far-field point above the ground plane will never
cancel completely. The radiation patterns may be described in two orthogonal planes,
each one also orthogonal to the ground plane. Plane P-P is in the plane of the
section, Figure 10.16b, and Q-Q orthogonal to it. A simplified far-field radiation
pattern in the plane P—P is illustrated in Figure 10.16c. The finer detail of this
pattern, especially below the ground plane, depends on circuit parameters such as the
position of the input line as well as the size of the finite ground plane. Along the
normal to and above the substrate, i.e. in the broadside direction, the electric field is
polarized parallel to the length direction of the resonant section of line, i.e. as given
by the electrical field components (E, and Ep) at the edges of the resonator in Figure
10.16b. In the orthogonal plane Q—-Q, a similar but slightly broader radiation pattern

i
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is given if the line width is less than A/3. This pattern will depend on the length of
the radiating edges at the open-circuit planes.

Circular polarization

There is considerable interest in the use of patch antennas for mobile communications
via satellites. If radiation with a circular polarization is used, i.e. a wave where the
electric field vector has a constant magnitude but rotates with time, the signal
received by the patch can be made independent of the physical rotation of the patch
about the line joining the source and the receiver.

The basic patch antenna in Figure 10.16a gives a linearly polarized wave. If the
antenna is made as a square patch, it will support two resonant modes that have
orthogonal polarizations for the far-ficld radiation. There are several techniques for
exciting both modes, e.g. using a microstrip line feeding one corner of the square, by
incorporating an asymmetry into the patch to couple between the two modes, or by
excitation from a coaxial feed through the ground plane to a diagonal point on the
patch.

A square patch that has degenerate modes at the one frequency does no more
than provide a linear polarized wave as a combination of the original two linear
components. For circular polarization, the individual plane polarized components
must be in time phase quadrature. This is achieved by separating the degenerate
modes into two uncoupled modes that have closely separated resonant frequencies. A
rectangular, but almost square, patch will provide this requirement. Now, when the
antenna is used at a frequency between the two resonances, one mode may be driven
with the phase of the mode voltage leading the impressed current by 45°, while the
other mode voltage lags the impressed current by the same amount, leading to the
time phase quadrature between the field patterns of the two modes. A survey paper
by Carver and Mink [10.29] and the book by Bahl and Bhartia [10.30] describe
analytical and experimental design approaches for this and other microstrip antennas
and are suggested for further reading on microstrip antenna technology.

EXERCISES

10.1 Determine the scattering parameter matrix (magnitudes only) for a circulator that, at each port,
has an input VSWR = 1.2, transmission loss = 0.5dB and isolation = 20dB.

102 The circulator in the previous problem is used as an isolator with a matched load
(VSWR = 1.05) connected to port 3. A load, with a VSWR =30, is connected to port 2.
Calculate the maximum input VSWR that can occur atport 1.

10.3 Estimate the dimensions of a cylindrical TiO, dielectric resonator, & = 85, in the TEq; mode
on an alumina substrate, if D= 1.5 L and the resonant frequency is 10.0GHz.

10.4 Design a broadband power divider with a power-split ratio of 1.0dB.

10.5 Estimate the two lowest resonant frequencies of a rectangular paich antenna, 48 mm x 50 mm
on a 1.5 mm thick substrate. For the substrate, & = 25.
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Active circuit
characterization

11.1 INTRODUCTION

Active devices are embedded in microstrip lines to form functional circuits, each with
their appropriate source and load. The aim of this chapter is to study the
characterization of active two-port networks so as to establish the requirements that
the design process imposes on the microstrip interface networks.

Very often the power gain has to maximized. However, when referring to
power gain it is necessary to be more precise, as a number of different power gains
may be defined and each has its own properties, significance and use. This is
explored in §11.2. The case when the conjugately matched condition is satisfied
simultaneously at the input and output is of considerable importance and is dealt with
in §11.3. As the simultaneous conjugate matched condition is only meaningful if the
two-port network is absolutely stable, stability is considered in §11.4. Power gain
formulae for some important cases are given in §11.5, and §11.6 deals with two-port
noise characterization. The chapter concludes with a discussion of design options.

Active two-port design involves many other considerations, €.g. non-linearities,
bandwidth and parameter sensitivity, in addition to those included in this chapter. As
a comprehensive exposition of amplifier and oscillator design is not the purpose here,
the reader is presented with a number of important active two-port properties in a
reasonably self-contained manner, showing how they reflect on microstrip circuit
design. For a more complete treatment, the reader is referred to the references
[11.1-11.5].

11.2 POWER GAINS

Consider the two-port network that is connected to a source and a load, as shown in
Figure 11.1. The figure illustrates the power flow for the network. The actual power
flowing into the input is Py, while Py is the power actually absorbed by the load.
Two other powers are needed, namely Pyy, the available power from the source, and
Pyy,s the available power from the output of the two-port network. Naturally,
Pays 2 Pin and Pay, 2 Poyr-
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Zs (Ty)
P MR L - zmo
i .
Yo Vol
Pavs Pin Pavy Pout

Figure 11.1 Power flow in a two-port network

Three power gains are now defined as follows:

G . . _ Pow
p = (Ordinary) Power Gain = —/—
; fin
P,
G; = Transducer Power Gain = o
P, avg
. . P, avo
G, = Available Power Gain = ——
Pavs (11.1)

The commonsense power gain is Gy, simply giving the ratio of power out to power
in. In some texts, e.g. Gonzalez [11.1], this gain is referred to as the operating power
gain. However, the transducer power gain is the most meaningful power gain from a
physical point of view. It gives the ratio of the power that is actually delivered to the
load to the power that could be delivered anyway to the load from the source by
purely passive matching techniques. P,y  can always be extracted from a source by
tuning out the source reactance and using a transformer to match the source resistance
to the load. If the load is receiving less power than Pyy, the two-port network is not
providing any useful amplification.

The available power gain is always used in the context of noise characterization.
Many of the noise performance formulae are then considerably simplified, as the
mismatch factors between a source and a load are taken care of automatically.

The power gains for any particular two-port network exhibit the following
properties:

i) Gp depends on Z; (IL), but not on Zg (Ts),
G, depends on Zg (I), but not on Z; (Iy), while

G; depends on both Zg and Z
i) Ga26G;, Gy 26 (11.2)

11.3 SIMULTANEOUS CONJUGATE MATCHING

The equality signs in (11.2) apply when there is conjugate matching at the output and
input respectively. When there is conjugate matching at both the output and input,
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this is known as simultaneous conjugate matching (s.c.m.) and
G, = G, = Gp = Gpax (113)

where G is the largest value that any of the three power gains can possess. It is
obvious that the three power gains, as they are defined in (11.1), are equal under
s.c.m. However, a formal proof that they are also equal to the maximum gain that
any of them can possess is required. Consider the differences in the way that
maximum power flows are achieved at the input and output. At the output, it is the
load that is adjusted to fit in with a fixed source as seen by the load. On the other
hand, at the input it is the source that is adjusted for a fixed load as seen by the
source. With a variable impedance source and a fixed load (Figure 11.2), maximum
power into the load is not achieved when Zg=Z[, but is obtained when
Zs=0-jIm(Z;). Thus, it is not immediately apparent that simultaneous conjugate
matching gives the maximum power gain, but surprisingly (11.3) is nevertheless true.
This will now be proved by contradiction.

Proof

Let G’ be the value of G, = Gp = Gy under s.c.m., assuming that Gpayx
occurs at other than s.c.m. conditions. The largest of the maxima of
G,, Gy, Gp (denoted by G, , Gy, Gppp » respectively) must be greater than
G’ and, in view of the inequalities above, it is either Gam or Gpm that is the
largest maximum. Let us assume that it is G, that is in fact the largest
maximum and thus that Gy, > G’. Since G; = G’ under s.e.m,, G, = Gy
must occur with a Zg other than that required to give s.c.m. Let us denote
this particular Zg by Zg_ . Let us now select Z; to conjugately match the
output when Zg = Zg . This will make G; = G,, but we will still have
Gy = Gy, since G, does not depend on Z; . Thus we will have G; = G, .

However, because the input is not conjugately matched, we will have
Gp > G. That is, there is a value of Gy > Gy . This contradicts our

assumption of Gy, being the largest maximum.
A similar contradiction results if we assume Gpm to be the largest
maximum. Hence, (11.3) has been proved.
Q.E.D.

Note 1
In view of the result in Exercise 11.1, simultaneous conjugate matching is implied by
conjugate matching at either port for a lossless reciprocal network.

Zs

AN

4

Z

Figure 11.2 A variable source and a fixed load
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Note 2

In the proof, we have implicitly assumed that the two-port network is absolutely
stable. If the two-port network is potentially unstable, i.e. there exist passive source
and load terminations that may cause the network to oscillate, none of these power
gains achieves stationary values with passive source and load terminations and

Gmax — .
Note 3

When referring to the maximum power gain, it is superfluous to specify it as the
transducer, available or ordinary power gain, as all of these maxima are the same.

11.3.1 Simuitaneous conjugate matching in the generai case

When the two-port network is absolutely stable, passive Iy and I} exist to achieve
simultaneous conjugate matching. Their values are denoted by Ig(opt) and Iy (opt)
respectively and are given [11.1] in terms of the two-port scattering parameters by

%
B, - (B} - 4|¢,|?)

T's(opt)

2C,
2 2)4
Ii(op) = B, = (B — 4IG,| )
L(op 26, (11.4)
where B, = 1+ |81|2 - ISo|2 - |A|2

By, = 1 - 5|2+ Isol? - |A]?

Cp=si —s38, Cp =155~ siA and A = siSo— 5S¢

11.4 STABILITY CONSIDERATIONS

In principle, the same techniques that are used to determine the stability of feedback
amplifiers at lower frequencies could also be used at microwave frequencies, if an
accurate equivalent circuit is available. Because of the necessity of including the
package parasitic elements and various high frequency corrections to the equivalent
circuit, the application of such techniques as the Nyquist and Bode criteria result in
excessive complexity and it is preferable to determine stability in other ways.

If negative real parts in the input and output impedances are found when the
network is terminated with real loads and sources respectively, then an oscillator can
be constructed by tuning out the reactance at the appropriate port and terminating the
port with a positive resistance, equal in magnitude to the relevant negative real part.
If an oscillator can be constructed in this manner, the two-port network is potentially
unstable. Potential instability does not mean that the two-port network is always
unstable, but only that that there exist some combinations of passive load and source
terminations for which it will oscillate.

§
¢
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Even though the presence of a negative real part implies instability, the converse
is not true, as it is possible to have an oscillation even with positive real parts for the
input and output impedances [11.6]. For example, such a situation can arise in
multi-stage amplifiers with positive input/output resistances for the overall
configuration, but with an oscillation produced by an inter-stage instability.
However, the case of instability with positive real parts is not likely to be important in
single-stage amplifier design and is frequently ignored. The reader is referred to
Woods [11.6] for a thorough treatment of this point. The stability criteria that now
follow in this section are all based on the requirement for a positive real part of the
port immittance when there is a real termination on the other port.

Negative real parts in the input and output immittances imply that |Tj,| > 1 and
ITouil > 1 respectively. It tums out that the regions of Iy values that produce
|Tin] > 1 and |Tjy] <1 are separated by a circle in the I} plane. Similarly, a circle
separates the regions for Iy producing |Tout| > 1 and |Toy| <1. Thusitis possible
[11.1] to draw stability circles on the Smith Chart as follows:

For stability circles that do not enclose the Smith Chart origin, which is the case
illustrated in Figure 11.3,
Tl <1 if sl <1  and T falls ousside the circle (Cp,Rp)
or if |s] >1 and T falls inside the circle (Cp,R)

[Touel <1 if |sol <1 and T falls outside the circle (Cs, Rs)
or if |so|>1 and T falls inside the circle (Cs,Rs)

SoA* — sit S8
where Cs = —OAZ-——I—z Ry = __2—L_2
[A]* = Isil [al® - Isi
s;A* - sg SfS
and G = __12_—_9_2_ R, = _T_fr__;
[A]" - Isol [Al" = Isol (11.5)

T, locations for stability/instability are illustrated in Figure 11.3. There is a

(@ [si] <1 ®) |si] > 1

Figure 11.3 Stability circles in the I; plane, showing the unstable region as the shaded area
of the plane. Mlustrated is the case of the stability circles not enclosing the origin.

i
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corresponding set for I locations. For practical loads that exist within the unit circle,
the hatched areas correspond to those loads that produce |Tj,| > 1.

An easy way to remember whether the inside or outside of the stability circle is
the stable region is to make use of Equations (2.24). For example, since a matched
load (I}, =0) at the center of the Smith Chart makes I}, =s;, the center of the Smith
Chart will correspond to a stable load if |s;] <1 and vice versa. This rule will also
show which region will be the stable region in the case when the stability circles do
enclose the origin.

11.4.1 Unconditional stability

Absolute, or unconditional, stability will clearly result if both input and output
stability circles lie outside the unit circle on the Smith Chart. Remembering that the
origin for the I'y and I planes is at the center of the Smith Chart, then for
unconditional stability

[sil <1 and |C.| > R_+1
aswellas [sg] < 1 and |Cs| > Rg+1 (11.6)

11.4.2 Other formulations for stability

Other expressions that give necessary and sufficient conditions for unconditional
stability, except in Case (2a) where the conditions are necessary but not sufficient, are
given below. From [11.1, 11.6], they are written in terms of the stability factor, K,
where

1 - Isil® ~ lsol? + |2

K =
2|sgsl aL7
The conditions are
1. K >1 and |A} <1
2. K>1 and 1-]s;®> > |sgs]

1= |sol? > Isgsel
(2a) K >1 and |sif < 1, |sof <1
3. K > 1 and B; = 1+ |s5i|2 - |so]2 - |4]2 > ©

L= Isil® + Isol® - [8]> > 0

4. K>1 ad B,

When the two-port network is potentially unstable, a formal substitution of the
s-parameters in (11.4) will lead to source and load impedances with negative real
parts. Thus

Potential instability =>  |Iy(opt)] > 1 and/or [Ii(opt)] > 1
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11.4.3 Stabilization techniques

In principle, an unstable two-port network may be stabilized with the same techniques
that are used in feedback amplifiers at lower frequencies. However, the complexity of
the feedback paths in a typical active device chip at microwave frequencies makes
this approach impractical. It is preferable to tackle the stabilization problem by
treating the two-port network as a "black-box”, using only the information provided
by its two-port parameters.

The only way that instability can arise in a unilateral two-port network, defined
in §2.1.6 as one where s, =0, is if either |sj| or |so] is greater than unity. On the
other hand, if |si| and |so| are less than unity, instability can arise if there is
feedback from output to input. Absence of this feedback with s; = 0 can ensure that
there is no instability. One way of stabilizing a two-port network is thus to
deliberately unilateralize it with feedback elements, provided that |s;|, |so| remain
less than unity. In general this cannot be achieved over a broad band of frequencies,
in which case neutralization could be attempted with s; being minimized as far as
possible over the frequency band.

Another stabilization technique is that of loading the input and output. Intuition
tells us that with sufficient loading any oscillation could be damped out, as long as the
source of oscillation is accessible for loading. Mathematically this is best seen with
the stability criterion expressed in terms of y-parameters as Llewellyn’s stability
criterion [11.7], namely

g >0, go>0 and gigo > 3 |yfyr|(1+cosh) (11.8)
where g = Re(y) and 0 = [}"f)’r

A simple proof of (11.8) will be found in [11.8]. Parallel-resistance loading of the
input or output effectively increases g; or g, respectively, as is clearly seen from the
y-parameter equivalent circuit in Figure 2.19. With sufficient loading, which in the
general case may require loading both the input and output, the stability requirement
can be satisfied. The dual expression of (11.8) in terms of impedance or z-parameters
shows that stability can also be achieved by series-resistance loading. However, one
should not construe that in any particular case series or parallel loading are equally
effective for stabilization. Among the reasons for this, one is related to the question
of whether a negative resistance is effectively part of a series- or parallel-resonant
circuit, as discussed further for oscillators in §11.7. Another, but in fact related,
reason could be due to the possibility of instability, even with positive real parts of
immittances. Finally, it should be noted that two-port networks could be envisaged
where stability would not be achieved with any degree of loading.

By referring again to Figure 2.19, it can also be seen that parallel-resistance
loading of the input or output does not alter yg or y; and thus, in view of the result

¥ _ i

S Y (11.9)
as presented in Exercise 2.10, s¢/s; is not affected by parallel-resistance loading of the
input or output. The significance of this result will become clear later in §11.5.2.
Similar arguments show that s¢/s; is also independent of series-resistance loading.

i
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11.5 SOME POWER GAIN FORMULAE

Many power gain formulae are in general quite complicated. However, in some
circumstances of practical importance they are either simple or can be presented in a
simplified manner. Sample proofs of selected formulae are given as Examples 11.1
and 11.2 below. These two examples adopt a physical approach as preferred by the
authors to the proofs found in other texts, which are based on the manipulation of
equations, possibly with the help of signal flow graphs. Proofs of some of the other
formulae are set out as exercises at the end of the chapter.

11.5.1 The matched condition
For the matched condition, Iy = I} = 0, giving

Gy = sl? (11.10a)
G = Is¢l®
P - si)? (11.10b)
and 6, =
271 - Isol? (11.10c)

Example 11.1

Prove that with Ty=1; =0, the transducer power gain Gy = |sg|? as given in
(11.10a).

Solution:

The source driving the two-port network is characterized by as, T as in §2.14
and §2.1.5. The incident and reflected waves at the input, a, and b,, are seen
from (2.17) to be related as follows:
a; = ag + FS bl
When I = 0, then ag = a, and, from (2.22)
P - Ias|2 = Ja |2
avg 1- |FS | 2 1

The incident and reflected waves at the output are aj and b, respectively. When
I, =0, then ay =0 and, consequently, Py becomes |b,]2 Thus

L

lay)?

Since I, =0, by/a; = s by definition. Hence
G = Istl®

G[=

Q.E.D.
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11.5.2 The unmatched condition

For the unmatched condition, [y and I} have arbitrary values. Following the
presentation of formulae by Gonzalez [11.1], the formulae for power gains may be
written as follows:

Gy = ¥lssl*or (11.11a)
or Gy = oslsel*n (11.11b)
Is¢)?
Gp = 2 9L
1 - |Tinl (11.11c)
fsel?
G, = 6,————
27— |Toul? (11.11d)
where = 1 - |n)? y = 1 - i)
- — st L= —
N P o oY 11 - Toulil? (11.12a)
1 - |12 1 - )’
and Os = T .2 6, = T 3
[1 - s;Ts] 11 - solil (11.12b)

Example 11.2

Prove that, for arbitrary Iy and T}, the transducer power gain G; = og)se|* 1. as
quoted in (11.11b).

Solution:

This result will be proved by starting with arbitrary (I, I;.) and then replacing I
and I in turn by matched loads. It will be shown first that

G ) = G5, 0my (11.13)
and then that
G[(rSr 0)

o | sl (11.14)
05G(0,0), from Example 11.1

In the general case, Gy(Ts, I1.) may be written as

2
G L) = Pow _ Ibsl” Pout2

Pavs Pavs  1bs] (11.15)
where by is a traveling wave characterizing the two-port output in the same way
that ag characterizes the source, i. bg is the traveling wave that would be
launched by the two-port output into a matched line. It is denoted as a "b" wave
because it is traveling in the reflected direction from the output of the two-port
network.

Referring to the result

1-|Iy|? P

[1-IxIyl? |as|? (11.16)
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ACTIVE TWO-PORT NETWORK LOAD
SOURCE
ag~——> rin bS ~— rL
Is Tout
(a)
ACTIVE TWO-PORT NETWORK LOAD
SOURCE
ag~—> a~ 5i bg ~~—> b';'__‘; =0
9% b Tout s
®

Figure 11.4 A two-port network, (a) with an arbitrary source and load, and (b) with the
load in (a) replaced by a matched load

that is to be proved in Exercise 11.4, the quantities in (11.16) are now interpreted
in terms of the quantities at the output in Figure 11.4a. Thus, letting Iy = Ty,
Iy = I}, ag = bg and P =Py, makes
2
Pouw _ _1-IG1° 1
|bs|? 11 - Toudil? (11.17)

Now, moving from Figure 11.4a to Figure 11.4b by replacing I} with a matched
load (i.e. I}, = 0), by at the two-port output is unaltered, as the waves that would
be launched into matched lines by the outputs of Figures 11.4a and 11.4b will be
the same. However, because of the matched load in Figure 11.4b, bg = b, and
thus Poy¢ = [by|2= |bg]% The term |bs|2/Pavs in (11.15) is thus seen as the G;

for the circuit in Figure 11.4b, i.e.
|bs)?
e 1 N
Pavs (11.18)
Substituting (11.18) and (11.17) into (11.15) completes the first stage of the proof
and gives (11.13), namely
G, IL) = G 0Om
Remaining with Figure 11.4b

= Gy(I 0)

G(,0) = —— = — X775
{50 Pavg Py lal (11.19)
Referring this time to the first equation in Exercise 114, the quantities are
interpreted in terms of those at the input of the two-port network in Figure 11.4b.
Remembering that the output in Figure 11.4b is a match_ed load m.akes Iy =sj.
For the other terms, Iy =T, a5 is unaltered and Py is the available source
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power in both cases. Hence

al* _ 1-IGP

Pay  I1-siT2 (1120)
Again, since I; =0, by/a; = sg, so that (11.19) now becomes

Gl 0) = o |sf]? (11.21)

This completes the proof of the second stage, i.e. (11.14), and thus (11.11b) has
been proved.

Q.E.D.

With unconditional stability, Gy(max) may also be expressed [11.1] in terms of the
stability factor as

f VK2
G = |—]{K - V¥K* -1
) =y [ ] (1122)
Setting K = 1 for the limiting case of unconditional stability gives
Sf
G = |—
tmax) (11.23)

Input/output resistive loading alters K without changing s¢/s, as explained in
§11.43. Thus (11.22) shows that if a two-port network is stabilized by resistive
loading of input/output, then the maximum power gain that can be achieved with no
possibility of instability is given by (11.23). |s¢/s;| is thus called the maximum
stable gain and is one of the figures of merit for an active two-port network.

11.5.3 The unilateral case

For the unilateral case, where there is no feedback from the output to input in the
two-port network, s, = 0 and the equations (11.11) reduce to

Gy, = c"slsflzcx.
Isel?
G, = —I—o,
R D
Isel?
G, = g———
R T PN (1124)

In the unilateral case, simultaneous conjugate matching is achieved with Iy = s and
I, = sg . giving

Gy, (max) Gpymax) = Gy (max)

Il
(1 - [s:190 - 5ol (11.25)
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In terms of y-parameters, Gy, (max) is given by

lygl?

Gu™ = Zgigo

where g = Re(y). (11.26)

as proved in Exercise 11.6.

If the unilateral case is assumed even when s, is non-zero, as in the unilateral
approximation, then the maximum error for the transducer gain will be bounded
within the range given [11.9] by

G
(1 +u) Gy  (1-wu) (11.27)
= 153 ¢ S¢ So
(1 - 1s:1D0 - s0]» (11.28)

provided that |Tg| < |sil, |TL| S [sol and |si|, |so| are themselves <1. In
particular, (11.27) is valid when Gy (max) is evaluated, as then [Ts] = |s;| and

Il = Isol-

where

11.5.4 Some further considerations
Mason’s U-function is defined in terms of y-parameters as

|Yf‘)’r|2
4(gigo— Bf8r) (11.29)

The activity or passivity of a network is determined by this function. For activity and
the possibility of instability, in the case of gj and go>0,U>1. A simple proof of
this criterion is give by Jorsboe [11.10]. The condition U =1 determines fa¢, the
maximum frequency of oscillation of a two-port network. fi,x is a fundamental
performance parameter of a high frequency transistor. For a unilateral network

Lyel? ,
4gi8, (11.30)
which will be recognized as the Gy (max) in (11.26).

U also has the property that it is invariant under lossless reciprocal embedding
[11.7] so that, if a network is unilateralized with lossless reciprocal elements, its U-
function is not altered. Thus, U is the maximum power gain of a network, after it has
been unilateralized with lossless reciprocal elements. One practical implication of
this property is that, in calculating U, it is not necessary to worry about the package
parasitics of an active chip.

U:

11.6 NOISE CHARACTERIZATION

In a typical amplifier cascade, the first stage is designed for a low noise performance,
the middle stage for high gain and the final stage for the output power level. The
lowest noise temperature for the first stage is achieved when it is driven by the
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appropriate source impedance. The source impedance that optimizes noise
performance is in general quite different from that required for best gain but, unless
the gain is exceedingly low, problems are not encountered.

The characterization of a noisy two-port network in terms of traveling wave
quantities has been developed by Meys [11.11]. The noise temperature Ty, of a two-
port network as a function of the source reflection coefficient I is given [11.11] by

Ry |Ts-Tol? 1
T, = + 4T =2
nToM TS Zy 14 )2 |1+ D) (1131)

where Tyg, Ry and T are noise parameters that characterize the two-port network, Zg
is the characteristic impedance with respect to which I and I are defined and T is a
standard temperature, typically 290K, and is part of the definition of Ry. Ry is
always positive and thus the term added to Ty is also always positive. This term
achieves its minimum value of zero when Iy = I, in which case T = Tpyg. Thus Ty
is the minimum noise temperature of the two-port network and is achieved when the
source has the optimum source reflection coefficient equal to Ip. Starting with a
given source impedance typically maiched to the line, the designer must convert it to
T, following the approach given in §6.11.

11.7 DESIGN OPTIONS

A two-port network that is absolutely stable is considered first. If gain is the primary
consideration, a design for maximum power gain proceeds by choosing T(opt) and
L(opt) from (11.4), to give simultaneous conjugate matching. The design
calculations are simplified if it is assumed that s, = 0. This is known as the unilateral
approximation. The inequality (11.27) may be used to check the maximum error that
might result from this approximation.

Given that matched loads are normal for the source and load terminations, the
design problem is to derive appropriate matching networks that transform them to the
desired terminations Tg(opt) and I3 (opt). The approach in §6.11 may be used for this
purpose. Other values of I and I} will be sought when the two-port network is
potentially unstable, but again the given matched loads are transformed via matching
networks to the Iy and I} required. The same matching techniques may also be
employed in low-noise design where a specific Ty is again required to achieve
optimum noise performance. .

If the two-port network is potentially unstable, simultaneous conjugate matching
cannot be achieved and the maximum gain approaches infinity. Now, either an
attempt may be made to stabilize the network, say as described in §11.4.3, or the
potential instability is retained but the unstable regions are avoided by a suitable
choice of Iy and I}. Stability is assured if neither I nor I} enters the instability-
causing region as defined by the stability circles of §11.4, as then both | Tout| and
|5iq) are less than unity.

That input and output loading can produce stabilization was seen in §11.4.3
from (11.8). Whether this loading is regarded as a part of the load or as a part of the

i
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two-port network itself does not alter the physical fact of the loading. If this loading
is made a permanent part of the two-port network itself, then the resultant two-port
network can be made absolutely stable, irrespective of what additional terminations
the source and load may present. One important advantage that accrues if the two-
port network is permanently stabilized is that the conjugately matched condition can
be achieved at both the input and output. In view of the result in Exercise 11.1 and as
also discussed in §2.1.5, this implies that with suitable lossless matching circuits a
matched two-port network can be obtained. This is not possible if the two-port
network is potentially unstable and the unstable regions are merely avoided. On the
other hand, stabilization by loading the input or output will produce a reduction of
gain and may be detrimental to other design aims.

The design process is helped by noting that terms of the form (11.12b) give
circular loci on the Smith Chart. If

1-|r)2

|1-sT|? (1132)

then, in the complex I' plane and with s constant, points that produce the same G lie
on a circle with center C and radius R, given [11.1] by

c = Gs*
1+Gls|? (11.33)
Va-G)+G|s|?
d R = —720
" 1+G|s)2 (11.34)

The loci for different values of G produce nested circles as illustrated in Figure 11.5
with the centers on the line between s* and the origin. The maximum value of G

Figure 11.5 The loci of the normalized gain function, G, plotted in the I™-plane for
s = 0.7/150°. When [ =s*, G is a maximum. In this case, G(max) = 1.961.
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occurs when I'=s". It is also interesting to note that the circle for G = 1 passes
through the origin, i.e. =0 —» G=1.

Nested circles in the Iy plane are also a feature of noise characterization. It will
be noted that the term that contains the variable I in (11.31) can be re-expressed as
follows:

_ 2 _ 2
N = IG-Tl® _ |r0|2[ll (1/Fo)rs|]

1= |2 1-|r5)? (11.35)
This equation is the reciprocal of the term of similar form on the right hand side of
(11.32). Thus loci of constant T;, are also circles in the I plane. Their centers and
radii can be obtained after appropriate variable transformations from (11.33) and
(11.34). With N defined in (11.35), the center Cy and radius Ry for constant N
become {11.1}
o

Cx = 13N (1136)
_ \]N§+N(1—|Fo|2)
Ry = TN (1137)

Oscillator design at microwave frequencies is also considered from the two-port
network point of view, rather than from an analysis of the positive feedback paths as
at lower frequencies, because of the complexity of the equivalent circuits when all the
required parasitic elements are included. The condition IsIj; =1 must hold if
steady-state oscillations exist in a two-port network that is terminated by passive
terminations, I and I}. This condition follows from the fact that with steady-state
oscillations present, the wave reflected from the input becomes the wave incident
upon the source and the wave reflected from the source is the wave incident upon the
input. As |T| <1, it follows that |Ij,| > 1. As is to be shown in Exercise 11.7, for
Is;i| and |sy] less than unity, T Ty = 1 also implies I} Iy = 1 and vice versa. The
condition |I3y| >1 may be due either to the inherent instability of the two-port
network or, if the two-port network is absolutely stable, to the potential instability
deliberately introduced by incorporating feedback into the two-port network, for
example through an inductance in the source lead of a FET in the common source
configuration. Once |Ij,] > 1 has been achieved, then an appropriate Iy must be
presented to the two-port network.

While the condition for steady-state oscillations is I'sTj, = 1, the requirement
for the growth of oscillations cannot be expressed in terms of these parameters. Some
sources state that for oscillations to build up from noise disturbances, |T3 T}, | must
be greater than unity, but this is not correct. Even if there is a growth of oscillations,
|TsTin| can be made less than unity by an appropriate choice of characteristic
impedance. For example, if Z; were chosen to equal a real Zg, I'y would be zero,
giving |36y | =0 irrespective of whether or not Zg allows growth of oscillations.
The condition for growth of oscillation must be expressed in terms of immittances,
either as

 Re(Zs) + Re(Zi) < 0 (11.38)

1
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for a circuit that is effectively series resonant, or as

Re(Y5) + Re(Y;p) < 0 (11.39)
for the parallel-resonant case. Whether a series- or parallel-resonant condition exists
cannot be determined from the two-port properties at a spot frequency. The behavior
of the two-port network over a range of frequencies must be determined.

The reader is referred to the references at the end of this chapter, in particular
(11.1, 11.4, 11.5], for further details on the design processes.

Example 11.3

Consider the following set of typical scattering parameters for a bipolar transistor at
1.0GHz:

8 = 0.6/=100° s = 0.04/33°

T [ A
st = 5.0/110° so = 0.8/=30°

Design a stable amplifier with a transducer gain that is greater than 14dB.

Solution:

The maximum transducer gain that may be achieved with the unilateral
approximation is

Gtu(max) = 108.5 (i.e. 20.4dB) from (11.25)
This will be achieved when

I =5 = 0.6 /+100°
and IL = sg = 08/+30°

Provided that the stability conditions are met, this gain will be more than
adequate as it gives a 6.4dB margin over the 14dB specification. To check for
stability, the stability factor K is calculated as

K = 0651 from (11.7)

Since K < 1, the two-port network is thus potentially unstable and the
construction of stability circles is required. These circles are now plotted on the
Smith Chart, on which it will be observed whether the source and load
impedances are within or close to the unstable regions. In the I plane

Cs = 276/135° and Ry = 2.01 from (11.5)
Likewise in the I} plane
CL = 140/43° and R, = 0.53

The stability circles are plotted on Figure 11.6, the figure being interpreted as
either the I or the I}, plane as appropriate. Since |s;| and |s,| are both less than
unity, the center of the Smith Chart corresponds to the stable I and I L regions
and the regions to be avoided in choosing Ty and T} are contained within the
stability circles.

It is seen that both s;* and so lie in stable regions, but somewhat close to the
limits of stability. As the true transducer gain G, approaches infinity when a
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LOAD GAIN
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Figure 11.6 A single stage amplifier design from two-port parameters, showing the
unstable region in the I’y plane together with the circles of gain degradation in dB about s;'.
Corresponding plots are also given in the I 1 plane.

stability circle is approached, Gtu(max), which is finite, would not be expected to
be an accurate approximation to G; when s{* and s are close to the stability
boundary. To check the validity of the Gy, (max) approximation, u is now
calculated to give
u = 042 from (11.28)
1

= -3.0dB, —— = 4.7dB from (11.27)
2 2
(1+uy (1-u)

and

That is, at Iy = 5" and I} = 53, Gy, (max) may differ from G, by as much as 4.7dB.
If so desired, G, may actually be calculated using (11.11a) or (11.11b).

It is not desirable to work close to the stability limits as the gain will then be
very sensitive to parameter changes. It is better either to choose new values for
I and I, that are much farther from the stability limits or to make the transistor
absolutely stable and design for the G(u(max) of the new two-port network. In
either case a reduction of gain will result, but there is a sufficient gain margin in
the 6.4dB value calculated earlier.

Gain circles are now constructed using (11.33) and (11.34) to indicate

H
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graphically the gain degradation from Gy, (max) that will be caused by choosing I'y
and I other than s;* and s;5. These circles are also indicated on Figure 11.6 and
are drawn for gain degradations of 1, 2 and 3dB. Probably a gain degradation of
about 2dB could be tolerated in this case. A I of 0.35/20° is approximately at a
point furthest removed from the stability limit and on the 2dB gain degradation
circle. This I} may be obtained from s} by adding a normalized shunt
conductance of 0.37 (i.e. =135%Q) together with some shunt susceptance.

Rather than choosing the new I} for a 2dB gain degradation, a design will
now be carried out that achieves absolute stability by connecting an admittance
Y’ in parallel at the output. The 135€2 value just calculated is used as a guide to
the choice of Y’. If absolute stability is achieved then, as explained earlier,
simultaneous conjugate matching will be possible, with the consequence that
good impedance matching to matched loads at both the input and output will be
possible. With Y’ connected in parallel, the new scattering matrix [S’] may be
calculated with the formulae of Exercise 11.8.

With Y’ of 1/(135Q) made a permanent part of the two-port network, the
gain degradation will be more than 2dB, because the power dissipated in Y’ is no
longer power dissipated in the load but is now lost within the two-port network.
To partially compensate for this, a smaller value of Y’ will be chosen. Let us take

. _ 1 .
Y = 200" This makes

s{ = 0.609 /—98.2° sy = 0.033/35.4°
st = 4.123/112.4° so = 0.491/-33.7°

and gives K = 1.774 (i.e. K > 1) together with |A| = 0.307 (i.e. |A]| < 1). The
new two-port network is now absolutely stable. The maximum unilateral
transducer gain is now

Gy (max) = 3559 (i.e. 15.5dB)

and is achieved with
Iy = s{* = 0.609/+98.2° and I} = sy’ = 0.491/+33.7°

The new s{* and s;," are also indicated in Figure 11.6.

The new Gy (max) apparently meets the 14dB specification. However, it is
necessary to check the errors introduced through the unilateral approximation by
calculating the new u. With u =0.09

= ~071dB, —21

] T = 0.77dB
(1+u) (1-u)

It is seen that even with a possible downward error margin of 0.77dB, 14dB gain
is still achieved.

Thus a 200Q2 resistor in parallel with the output adequately stabilizes the
two-port network and choosing Iy = 0.609 /98.2° and I} = 0.491/33.67° will
provide more than 14dB gain. At this point the design is complete, apart from
calculating the required matching networks.
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Comments
It is of interest to see how the true maximum transducer gain, Gy(max), compares
with G[u(max). Using (11.22)

Gy(max) = 38.6 (ie. 15.9dB)

Thus Gy(max) differs from Gy, (max) by only 0.4dB. Of course, the I, I required
to achieve Gy(max) will be somewhat different from those required for Gy (max).
It is left to the reader to calculate the I, I3, for G(max) from Equations (11.4).

It is also of interest to calculate the maximum stable gain, given when
K =1, namely

|'s¢ ] | st . . .
I—l = |=| = 125 (ie. 21.0dB) from (11.23)
S lsrl

This shows that up to 21.0dB, or 5.1dB more than Gy(max), could have been
obtained with a different stabilizing resistor arrangement. Thus, the present
design is significantly overstabilized. If a higher gain were desired, different Y’
values could be tried.

The reader will have noticed that, by simply choosing Iy =17 =0 (ie.
simple matched loads) a transducer gain G, = |sg|? giving 14.0dB could have
been obtained and in the process satisfied the design requirements. Also,
Iy = I = 0 would probably be far enough removed from the stability boundaries
to provide a sufficiently stable design. However, the two-port network then
would not be matched as seen from either the source or the load and there would
be a significant V.S.W.R. on the connecting transmission lines. In particular, this
means that the two-port network would provide a load or source impedance to the
previous or following stages respectively that is dependent on the length of
interconnecting transmission line.

EXERCISES

11.1 Prove that for a lossless reciprocal two-port network

G =Th & I =Ty

11.2 This question relates to the stability properties of a two-port network.

i) To what values do K, A and Gy(max) tend, as s; and s, tend towards zero?

ii) What is the value of K for the balanced amplifier of Exercise 2.3(iii)? What are the
implications of this result for stability?

iii) When a two-port network is unilateral, verify that the formulae for Iy(opt), I1(opt), and
G(max) reduce to the correct values.

iv) Show that the stability criterion is satisfied if |s;| < 1, |so] <1 and s, = 0.

v) If |si| > 1, show thatK < 1 and/or |A| > 1.

11.3 Derive an explicit expression for G; in terms of s-parameters and [, I} only.
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114 A source ag, Ty is connected through a zero length line of characteristic impedance Zg t0 2
load Iy. Show that

R LY GO LY G £ | A 3

—_— = an
“'rxrﬂ2 Pavs [1- GOy |? |as|?
where "a" is the incident wave in the Zo line, and P, is the power absorbed by the load. When
Ty = 0, the variable "a" becomes as. .
115 Using the approachof Examples 11.1 and 11.2, derive the formulae for G, and Gp:
i) inthe matched case withTg=T =0
ii) in the general case with arbitrary Ty and I}

11.6 Prove that in terms of y-parameters

1yel?
48igo

Glu(max) = where g = Re(y)
117 Prove that with |s;| < 1and |so| <1
Gpli=1 & Tl =1
11.8 Consider a two-port network with the scattering parameters [S]). Connect an admittance Y’ in
parallel across the output to produce a two-port network with the scattering parameters [s'}.
All parameters are normalized to Z,. Show that

. srse6 ,_ 8
Si=Si—'r?"‘ Sr=—§—l;‘
, Sf , 145
§f = 'g,‘ So = g, -1
Y'Z
where £ = 0 F = 1+E(1+5p) and A = §iSo = Sr5f

2

119 Noting the relevant symmetries in the [S'} of Exercise 11.8, deduce the {S’] when Y’ is
connected in parallel at the input.

11.10 Consider a two-port network with the following scattering parameters:

§; = 0.5/=90° s; = 0.05/33°
s¢ = 10.0/100° so = 0.4/=20°

i) Check for stability without and with a 10022 load in parallel at the input and output in

turn.

ii) Using the 100Q loading at the input for stabilization, select Ty, I} for maximum gain.
Compare Glu(max) with and without stabilization.

iii) Repeat part (ii) for 10002 loading at the output.

iv) Return to the original two-port network without loading. Draw the appropriate gain
degradation circles and choose Ty, I}, to obtain a Gy, that is equal to the Gy (max) of the
network with the 1009 loading at the input.

11.11 The insertion gain of a two-port network is formally defined as Poyt/Pout, Where Poyy is the
output power as in Figure 11.1 and Py is the power that would flow to Z, if the two-port
network was removed and the source was connected directly to the load. Show that the
insertion gain is identical to the transducer power gain if Zg = yAg
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Microstrip circuits
and subsystems

12.1 INTRODUCTION

This chapter introduces the reader to selected practical microstrip circuits or sub-
systems. It brings together some of the ideas of earlier chapters and shows how they
may be combined to produce functioning self-contained building blocks, that in turn
may be a part of a complete microwave system.

The circuits have been adapted with our interpretations from those described in
the literature and have been chosen for the simplicity and clarity with which they
illustrate certain key circuit arrangements. The circuits described are a low-noise
amplifier in §12.2, a balanced mixer in §12.3 and a selection of switching circuits in
§12.4.

12.2 A LOW-NOISE AMPLIFIER

A two-stage low-noise amplifier circuit is illustrated in Figure 12.1, adapted from
Fulton [12.1]. The input and output strips, (T) and () respectively, are 50Q lines for
connection to the coaxial/microstrip transitions. The two FETs (e.g.@) have their
sources connected with minimum path lengths to the ground plane and thus present
the common source configuration to the matching circuits. The matching circuits use
microstrip lines of the same characteristic impedance (50Q) in series and shunt,
except for lines (3) and @ that are quarter-wave transformers. Three chip capacitors
(e.2.() provide microwave coupling between circuits at different d.c. bias potentials,
as well as d.c. isolation of externally connected microwave circuits.

As this is a low-noise amplifier, the first stage input matching network, @) and
(@, converts the matched source to the source reflection coefficient, Iy, for which the
transistor has its minimum noise figure. The second stage contribution to the noise
figure is small, since the noise contribution of the second stage to the overall noise
figure is reduced by the gain of the first stage. Nevertheless, when very low noise
figures are to be achieved it is desirable also to optimize the second stage for low
noise. Thus the interstage network ((6), (D) and (8)) transforms the Iy, of the first
stage to the noise-optimum source impedance I to drive the input of the second
stage.

The output matching network, ) to @, optimizes the power gain. It thus
transforms the external 50Q load to produce a conjugate match to the Iy of the
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Vas1 Vps2

Figure 12.1 A low-noise two-stage amplifier circuit, adapted from Fulton [12.1] (Reprinted
with permission of Microwave Journal, from the November 1984 issue, © 1984 Horizon House,
Inc.)

second stage. This matching network is also designed to produce a band-pass filter
characteristic in the gain at frequencies away from the center frequency.

Four separate bias voltages are provided to the gate and drain terminals of the
two transistors. The series resistors in the bias supply connections can be used to
monitor bias currents. The bias circuits are decoupled from the microwave circuits by
high impedance (120£2) lines (e.g.0®) that are approximately A/4 long. The large
patches at the end of these lines, as well as the points where the d.c. bias potentials
are connected, provide low impedance paths to ground. The rejection of spurious
signals is most critical at the input to the first stage, where an even lower impedance
to ground is achieved for the Vgg; supply by the open-circuit terminated 50Q line,
(@, that is approximately A/4 long. Space is conserved by folding this line with a
mitered right-angle corner.

The pads, (7, are connected to the ground plane and may provide points of
attachment for interstage shields that pass over the center of each transistor and
minimize unwanted feedback in the circuit.

12.3 MIXERS

12.3.1 Balanced mixers

Mixer circuits may be used whenever there is a need to translate signals between
frequency bands. When two signals of differing frequencies are fed into a non-linear
element such as a diode, numerous intermodulation products are produced, including
the sum and difference frequencies of the signals. Mixer circuits are often configured
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Figure 12.2 The phase relationships for hybrid networks, showing (a) the quadrature or 90°
hybrid, and (b) the 180° hybrid
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in the form of balanced mixers with two mixer diodes connected to two mutually
isolated ports of a 3dB hybrid network. Hybrids that are used in this connection are
invariably one of two types: the 90° or quadrature hybrid and the 180° hybrid. Each
type is illustrated diagrammatically in Figure 12.2. An input signal into any port of
such a hybrid will deliver half the input power into two other ports and zero power
into the remaining fourth port, i.e the isolated port. For both types of hybrid, there is
mutual isolation between ports 1 and 4 and between ports 2 and 3. Each set of
mutually isolated ports becomes the output ports when an input signal excites either
port in the other set. The difference between the two types of hybrid lies in the phase
differences between the outputs.

As illustrated in Figure 12.2, the two outputs are always 90° apart in the
quadrature hybrid, while in the 180° hybrid they are either in-phase or 180° out-of-
phase. For example, in Figure 12.2a, an input to port 1 will give outputs at ports 2
and 3 that are 90° apart from each other. However, it is important to note that the
phase values shown in Figure 12.2 correctly give only the phase differences between
outputs. There may be additional phase shifts from an input to both outputs, not
affecting the phase difference between the outputs. These common phase shifts, if
any, between the input and each output are not shown here.

The 3dB edge-coupled directional coupler and the 3dB Lange coupler, together
with the branch-line coupler of earlier chapters, are examples of quadrature hybrids.
The hybrid-ring coupler is an example of the 180° hybrid.

In a balanced mixer as illustrated in Figure 12.3, the signal (microwave or radio
frequency, r.f.) and the local oscillator (l.o.) are applied to one pair of mutually
isolated ports, say 1 and 4, and a pair of mixer diodes that are closely matched in their
characteristics are connected to the other pair of ports. When the two diodes have the
same orientation with respect to ground, as in Figures 12.3a, b and ¢, the intermediate
frequency (i.f.) outputs across the two diodes are out-of-phase and may be combined
by subtracting one output from the other. If the two diodes are connected with
opposing polarities to ground, the i.f. outputs are in-phase and are combined with a
summing circuit, as in Figure 12.3d. The subtraction and summing circuits may
themselves be hybrid networks at the intermediate frequency.

Microstrip circuits and subsystems 273

fRP
5o
@ o |=/\r| @
fre[90° — f10[0° R 90° fre0° — fr0/90°
- fip[90° ] ® - fp[=90°
= fLO—J =
fRF
Ho

(b) ® y Q‘ @
fge/0° - fi0/0° ‘h '@ frel0° — f0/180°

- f:/0° 0% - fip/-180°
= fLO —} —
FROM 3 FROM 2 FROM3 FROM 2
+ —r_% r P
COMBINED = = COMBINED =
IF.OUTPUT LF.QUTPUT
© (d)

Figure 12.3 Balanced mixers with a quadrature hybrid in (a) and a 180° hybrid in (b). The
diode outputs are combined as in (c) if they have the same orientation with respect to ground
and as in (d) if they are connected anti-phase with respect to ground.

There are a number of reasons why balanced mixers are used. It turns out that
the local oscillator amplitude modulation noise components, when mixed down to the
i.f. band, appear across the two diodes in-phase when the i.f. signals are out-of-phase
and vice versa, so that when the signal if. outputs are combined these noise
components cancel. Considerable cancellation of local oscillator amplitude
modulation noise can be achieved in this way. For similar reasons balanced mixers
can reject many spurious intermodulation products. Further, because the r.f. and l.0.
signals are applied to mutually isolated ports of the hybrid, there can be good
isolation between these signals, although not in every case [12.2]. For further study
in this area, the reader is referred to Maas [12.2].

12.3.2 A balanced mixer example

A balanced mixer using a 90° hybrid of the branch-line type is shown in Figure 12.4,
based on Johnson [12.3]. The structure is quite symmetrical as far as the r.f. and lLo.

i
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Figure 12.4 An image-rejection balanced mixer circuit, based on Johnson [12.3]
(© 1968, IEEE)

inputs are concerned and the r.f. and Lo. inputs may be interchanged. The l.o.
frequency is less than the input signal frequency, with the difference being the
intermediate frequency. The image frequency is that frequency that also differs from
the local oscillator by the same amount, i.e. the image frequency = (fyo — fig).

The two diodes are connected with opposing polarities to ground and, as
explained earlier, their if. outputs are to be added. At if., the two diodes appear
simply in parallel, which results in the i.f. signal currents being added together. The
if. ground return is not shown in Figure 12.4, but may take the form of a high
impedance Ay /4 line with an i.f. short-circuit termination that is connected in parallel
with the Lo. input line. The r.f. and L.o. frequencies are decoupled from the if. output
by r.f. short circuits at the two diodes, presented here by the two open-circuit
terminated low impedance A/4 lines. The degree of isolation between the r.f. and Lo.
circuits will depend on how well the diodes are matched to 50Q at these frequencies
[12.2).

There are band-stop filters at the image frequency in the r.f. and L.o. lines. Their
purpose is to present a reactive termination at the image frequency at each diode
position. This improves the diode conversion loss and consequently reduces the noise
of the mixer—i.f. preamplifier combination.

The band-stop filters are of the type discussed in §9.5, where it was shown that
at the center of the band-stop band they have a reflection coefficient I' = +1, i.e. they
present an open circuit at their input. Thus, in this balanced mixer, there are open
circuits at the image frequency at the r.f. and l.o. junctions to the hybrid network.
These open circuits reflect certain impedances at the planes of the diodes. It was
shown in Exercise 7.7 that these resultant impedances depend on the excitation mode
(even or odd).

For analysis to determine the impedances seen by the diodes at the image
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frequency, the diodes are taken as the sources that are connected to the inputs of the
hybrid. In fact the diodes are in front of the hybrid by lines that are ~A/8 long. The
hybrid is now also taken as being terminated with open circuits at the other two ports
for this frequency. It may be shown, using the results of Exercise 7.7 and noting the
presence of the A/8 lines, that the impedances seen by the diodes are open and short
grcuits for the even- and odd-mode excitation respectively. As a consequence, there
is no power absorbed by the circuits external to the diodes at the image frequency.

12.4 SWITCHING CIRCUITS

Cir.cuits with two or more discrete states of operation require switching elements to
S'\:vitch between the states. The ideal swiich is one that can instanily change between
high and low impedance conditions. Electronic devices that can be externally
switched with d.c. voltages include the field effect transistor (FET) and the p-n, p-i-n

and Schottky diodes.

12.4.1 Switching elements

The field effect transistor

The FET switch, as illustrated in Figure 12.5, is a three-terminal device with the
switched states controlled by the gate voltage. It is preferably operated in shunt
between the microstrip line and ground, an arrangement that is facilitated by the drain
cqnnections forming a through-line, which can be readily connected as a part of a
microstrip line as in Figure 12.5b. The FET should be operated in the linear
'resistance region of its characteristics with Vpg = 0. At this operating point, shown
in Figure 12.5a, there will also be a minimum power dissipation with only negligible
reverse bias currents being supplied to the gate. With Vpg = 0, it will be seen that
the microstrip line may be maintained throughout at d.c. ground potential for all the
FETs. Further, interstage decoupling in a multi-FET circuit will not be required,

THROUGH CONNECTION

/TO THE GROUND PLANE
Ip Vgs =0 v
LOW T AIR BRIDGE
RESISTANCE —¢- SOURCE ..’ OVERLAY
RESISTANG
BNy A Vas| > 1Vl r
% O (@
OPERATING
POINT GATE | ™~ DRAIN
()

Figure 12.5 A field effect transistor, showing (a) the linear operating regions for a switch,

and (b) the. structure for a monolithic distributed switch approach, from Ayasli [12.4]

giepnn;id ;vnh permission of Microwave Journal, from the November 1982 issue, © 1982 Horizon
ouse, Inc.
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since the control voltages are provided to the third or gate terminal of each individual
FET and thus will not affect the d.c. potentials of the microstrip lines.

In the ON-state with Vgg = 0, the microwave equivalent circuit between the
drain and source will be a low resistance, typically of the order of 3Q. In the OFF-
state, when |Vgs| > | Vp|, there is a much higher resistance of the order of 3kQ.
Vp is the pinch-off voltage for the reverse biased gate/channel. However, there are
also significant shunt capacitances in the OFF-state. It is for this reason that the FET
is parallel-connected between the microstrip line (drain) and the ground plane
(source) and the low impedance ON-state is used to provide the circuit isolation.
This configuration is the form described by Ayasli [12.4] and shown as an integral
part of a monolithic microwave integrated circuit in Figure 12.5b. Discrete FET
components for a hybrid microwave circuit will be connected to the circuit in a
similar manner but, of course, will have additional series inductances associated with
the connecting leads. In the OFF-state, the capacitance components may be allowed
for as a part of the matching circuits and the microwave signal may travel past the
plane of the shunt FET with minimal reflections or absorption of power in the high
impedance parallel equivalent circuit.

The p-i-n diode

The p-i-n diode, described in detail with circuit applications by White [12.5], is a 3-
layer silicon diode with the heavily doped p and n regions separated by a high
resistivity intrinsic layer.

The diode exhibits a low dynamic resistance when a forward bias current is
applied and carriers are injected and maintained in the intrinsic region. This
resistance, typically less than 1Q at 1.0GHz, applies even at high microwave current
amplitudes as the waveform is not readily rectified, the reverse half-cycle of the
waveform being too short to remove the charge that is stored in the intrinsic region.
When a reverse bias voltage is applied, there are no injected charges in the intrinsic
region and the diode is prevented from conducting, even under the application of
large peak microwave voltages. With reverse bias, the microwave equivalent circuit
of the diode is a few ohms in series with the junction capacitance that is of the order
of 1pF.

12.4.2 Digitally controlled phase shifters

The design details for a digitally controlled phase shifter will be considered in terms
of idealized switching elements that have only two states equivalent to either a short
or an open circuit. The phase shifter will be considered in a 50Q characteristic
impedance system. Modifications to the idealized design may be required in practice
to compensate for non-ideal switching elements.

Phase shifters using loaded-line elements

Loaded-line elements are typically used for the smaller phase differences and will be
described here in terms of a 45° phase element. Consider the circuit illustrated in
Figure 12.6. The two stub lines are terminated with identical switching elements that,
with their open- or short-circuit impedances, make the circuit identical to Figure 7.7
for the even- or odd-mode analysis of hybrid-line couplers. The two-port network
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Figure 12.6 The loaded-line digital phase shifter. The microstrip line may be at dc.
ground, in common with any adjacent elements.

phase relationship is shown in Figure 12.7 and should be comparf.:d directly .with
Figure 7.8. The —90° reference phase, with any additional phase shifts due to input
and output line lengths, is a constant for both states z.md of no further concern in a
differential phase shifter. The two states are symmetrical about the reference phase.
For a 45° phase shifter, © = 22.5°. Based on (7.17)

o = tan"'(y,) (12.1)
giving y, = 0.4142 and Zp = 121Q. The through line between the two stubs is A/4

long and, from (7.15), namely

2 22
= 1+y (12.2)

has a normalized characteristic admittance that is always greater than unity. Thus the
characteristic impedance is always less than 50€Q. With y; = 0.414.2, 'then W= 1.Q82,
ie. Z, = 462Q. Both line characteristic impedances are within the practical
limitations for microstrip lines. '

Turning now to a 22.5° phase shifter with 8 = 11.25°, the respective values for
Z, and Z become 49Q and 251, with the impedances presented to the through l}ne
being +j251Q. The through-line impedance is close enough to 50Q, but the high

INCIDENT WAVE

OUTPUT WITH THE SWITCHES AS

OUTPUT WITH THE SWITCHES AS e g

OPEN CIRCUITS

\
-90°
REFERENCE
PHASE

Figure 12.7 The phase relationships for a loaded-line digital phase shifter

)
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SWITCHING

ELEMENT

A/8 ZQ=_j57-4Q —Zp=57.4Q
Q

A/4 ~—Z;=120Q

Z,=j251Q
p $
OI [N Z,=49Q 00 1

/4 —

Figure 12.8 31/8 length stubs for small phase shift sections. The impedance values shown
are for 22.5° phase shift with the switching elements in the open-circuit state.

value for the stub-line impedance may be outside the range of practical line values.
To overcome this problem, a 3A/8 stub length may be used as illustrated in Figure
}2.8, where the A/4 section branching off the through line acts as a quarter-wave
impedance transformer. Taking Zp = 120Q for the quarter-wave transformer, the
+j251Q impedance for the stub at P requires an impedance Zg = Fj57.4Q at Q.
This is obtained with Zg = |Zo|. Note that whereas short-circuit terminations on

the A/8 stubs gave the lesser total phase value, &), now the reverse is the case with
3A/8 stubs.

Phase shifters using switched-line elements

Switched-line' phase shifters are used when the larger phase shifts are required.
Between the input and output there are two separate paths, either one of which is
selected by the switching elements. The case of a 90° element, illustrated in Figure

.fATH LENGTH, A/4 = 90°

| d ht }

I )
i 2k
Nz A4

INPUT _*_— 3 QUTPUT
Al4 —he— Al4
I—
S3

Figure 12.9 A 90° switched-line phase shifter, with the switches connected in parallel to
the ground plane
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12.9, will be considered. Here again, the switching elements are parallel-connected
between the microstrip line and the ground plane.

In State 1, the parallel-connected elements S; and S, are low impedances to
ground while Sj is a high impedance. A direct path from input to output is provided
across S3. The input junction sees a A/4 line terminated by the short circuit of §;,
which reflects an open circuit at the input junction. A similar effect occurs at the
output because of S;.

In State 2, the impedance of each switching element is changed and a direct path
between the input and output junctions now passes across S, and S;. S3 is
equidistant from each junction and its low impedance transforms through the A4
lines to appear as a high impedance at a junction. The through path in State 2 is A/4
longer than for State 1. thus providing the 90° phase shift at the design frequency.

A switched-line circuit that maintains a constant difference between the
switched phase states with frequency is described by Burns et al. [12.6]. The delayed
or longer path has the additional line length to give a delay A9. Two A/4 short-circuit
terminated lines, connected as parallel stubs with a separation of A/4, are placed onto
the reference or shorter path. Analysis shows that the phase variation with frequency
of this circuit, as a part of the reference path, can be made to follow that of the
additional matched length of line in the delayed path. Further, at the mid-band
frequency, the stub lines appear as open circuits to the reference path and their
separation is such that, for small frequency changes, there will be significant
cancellation of the refiected waves from the planes of the stubs. As a consequence, a
low V.S.W.R. will be maintained. To track the phase variation with frequency of the
additional line length in the delayed path, the necessary characteristic impedance of
each stub is given [12.6] by

RZO
Zswb = a0 (12.3)

For the 90° element Zgyp, = Zq, While for a 180° element a lower impedance of Zo/2
is required.

It is possible with switched-line phase shifters for the path that has apparently
been blocked to become resonant. At resonance, 2 substantial signal may be
transmitted through the path, affecting the transmission properties of the phase shifter.
This occurs when a path is approximately nA/2 long and is terminated at each end
with either the high-series or low-shunt impedance of a switching element. The
resonance may be damped out by switching in a parallel resistive load at a plane of
voltage maximum along the line.

12.4.3 A transmit/receive switch

A transmit/receive (TR) switch is used to connect a transmitter and receiver to a
common antenna. In either mode, when the switching circuits have been correctly
set, a direct path with a low residual V.S.W.R. is required between the antenna port
and either the transmitter or receiver port. This can be achieved with a large
mismatch, e.g. a short circuit to ground, introduced into the unwanted path. The
mismatch must be placed in such a way that the unwanted path appears as an effective
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Figure 12.10 A 10W TR switch chip fabricated on a GaAs substrate, based on Ayalsi et al.
[12.7] (® 1982, IEEE)

open circuit at the combining junction. Thus, in the receiving mode, the path towards
the transmitter must appear as an open circuit, so that as much received signal from
the antenna is passed through to the receiver. For the transmit mode, it is also
essential to prevent excessive power from entering and damaging the first stages of
the receiver that will have been designed to operate at very low signal levels.

Ayasli et al. [12.7] describe a 10W TR switch chip that has been totally
fabricated on a 0.1 mm GaAs substrate. For operation at 10GHz, the chip dimensions
are 4.5 x3.7mm. Single-gate FETs with a construction similar to Figure 12.5 are
used as switching elements. An interpretation of the circuit, adapted from [12.7], is
illustrated in Figure 12.10. The insertion loss is of the order of 1.0dB with higher
than 25dB isolation at any time between the transmitter and receiver ports. Assuming
that 50€2 lines are brought out to the edge of the substrate, the other line impedances
may be deduced from the approximate relative line widths on a GaAs substrate with
g, = 12.9. Quasi-static approximations may be used, as it is found from (4.41) that
the operating frequency is well below the frequency of 110GHz above which
dispersion effects would become significant. :

Interpreting the circuit of Figure 12.10

(@ A through connection to the ground plane.

() Folded open-circuit terminated A/4 stubs with a low characteristic impedance
(=43Q) line. Each parallel—connected stub line gives a low microwave
impedance at its junction to (3.

(® High characteristic impedance (=75K) A/4 bias network lines. Each line
transforms a low value of load impedance to a high value of input impedance.

@ 50Q interconnecting lines.

Q® ©

@

[12.1]

[12.2]
[12.3}

[12.4)

[12.5]

[12.6]

(12.7)
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A/4 transformers (= 32Q and 562) to give an optimum performance for peak
voltages and currents in the FETs when 10W is being transmitted (see [12.7]).

A double-stub matching network with = A/8 between the stub lines.

’ljhe drain-source connection giving Vps = 0 for both transistors. Note that,
since tbe line length <«A/4, this element is also being used as a single stub,
short-circuit terminated, matching element.

The gate bias voltage is fed through a low-pass filter, preventing microwave

leakage from the gate circuit that may otherwise occur via the drain-gate
capacitance. This low-pass filter is identical in function to that for the other

FET, ie.(® and (.
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Microstrip line
experiments

13.1 INTRODUCTION

The procedures that are described in this chapter provide an introduction to microstip
line experiments. The ease and precision of any measurement are necessarily related
to the quality and sophistication of the equipment that is available for the purpose.
However, it should be possible to perform experiments designed primarily for
instructional purposes using any reasonable quality equipment. The emphasis will be
placed on the measurement of fundamental microstrip parameters, as this will lead to
a broader understanding for the design of microstrip circuits.

In §13.2, circuit requirements and procedures for the measurement of scattering
parameters that were first introduced in Chapter 2 are discussed. A complete set of
s-parameters gives a detailed specification of a two-port network. However, there are
many instances where a reduced set of information may be all that is either attainable
in view of equipment limitations or, indeed, required. The relationship between such
measurements, e.g. V.S.W.R,, insertion loss and s-parameters, is discussed.

The microwave literature abounds with experimental techniques for specific
microwave measurements and books have been written specifically on the subject,
e.g. [13.1-13.4]. Two experimental procedures have been selected because of their
relevance to the basic properties of microstrip lines. The first experiment, §13.3,
concerns the measurement of both the effective relative permittivity and the
characteristic impedance of microstrip lines. This is followed in §13.4 by an
experiment that uses resonant structures, through which a better understanding of
some of the discontinuity effects as they apply to microstrip lines may be obtained.

The need for precision measurement has been considered to be of secondary
importance here, when compared with the needs for simplicity and reliability in
experimental design. In particular, some of the end-effect measurement techniques
for discontinuity evaluation [13.5] that require further circuit etching between
measurement sets have been omitted, because they do not fulfill the necessity for
"non-destructive” testing in a teaching laboratory environment.

13.2 S-PARAMETER MEASUREMENTS

Any one of the microstrip circuits described in the earlier chapters may be
characterized through their scattering parameters, from which most small-signal
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properties of the circuits may be inferred. Directional couplers, hybrids, filters, etc.,
as well as the sub-assemblies of Chapter 12, can have their small-signal properties
verified through the measurement of their scattering parameters as functions of
frequency. Scattering parameters may be measured either by the direct application of
test incident waves, as was described in Chapter 2, or by using the six-port technique
[13.6). The six-port technique, where the magnitude and phase information for the
scattering parameters may be deduced from power measurements only, is beyond the
scope of this book and is being mentioned only for the sake of completeness.

To measure scattering parameters following the approach in Chapter 2, a test
input is applied to one port and the other port is terminated in a matched load. The
incident and reflected waves are sampled by means of directional couplers at the input
and output ports. The output amplitudes of the directional couplers are compared and
the ratios of each appropriate pair of outputs give the relevant scatiering parameiers.
As only two waves are compared at any one time, two directional couplers are
sufficient, if the measurement set-up is reconfigured for each individual s-parameter.
The schematic diagram in Figure 13.1 shows three directional couplers, two at port 1
and one at port 2. The coupler outputs A and B are used to determine s; and the
coupler outputs A and C to determine s¢. Reversing the device under test (DUT)
allows s and s; to be similarly measured.

The phase difference between pairs of outputs is related to the phase of the
appropriate s-parameter. The problem is that the phase differences of the appropriate
waves at the input and output reference planes to the DUT are required, but it is the
phase differences at the directional coupler outputs that are actually obtained.
Variable path lengths must be inserted in the connecting transmission lines, so as to
make the phase difference measured at the coupler outputs the same as at the
reference planes of the DUT. Experimentally this is done by replacing the DUT with
a device having known phase characteristics and adjusting the variable line until the
correct phase output is measured. When measuring s; O So, the DUT is replaced by a
short circuit to produce a reflection coefficient with a constant 180° phase. The
variable line is adjusted until for all frequencies the phase difference measured is also
180°. By insisting on the measured phase difference being 180° for all frequencies
and not just one spot frequency, it is ensured that the transmission paths are exactly
equal and do not just differ by nA/2. In effect, the short circuit defines the position of
each reference plane of the DUT.

When phase-calibrating for sy and sg, a suitable reference is a piece of through-
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Output A ; proportional to the incident wave at port 1
Output B : proportional to the reflected wave at port 1
Output C : proportional to the transmitted wave at port 2

Figure 13.1 The measurement configuration for s; and s¢
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Figure 13.2 Replacing the device under test (DUT) by ihrough-lines for calibration

purposes. (a) DUT and its connecting lines. (b) Reference through-line of the same total
length as the DUT and its connecting lines. (c) Reference through-line of the same length as
the connecting lines.

line, either of the same total length as the DUT (including its connecting lines),
Figure 13.2b, or of just the length of the connecting lines, Figure 13.2c. The use of
the shorter line as a reference would give proper phases for s¢ and s; of the DUT. The
use of the longer teference line would give the phases over and above the phases of s¢
and s, for an ideal line of length d.

It is important that reference planes established by the calibration procedure for
reflection are the same as obtained by the calibration for transmission, as inconsistent
measurements would otherwise result. In modern equipment only one calibration,
say for reflection, is required [13.2]. The cormect line lengths for the other
measurements are then automatically obtained as a result of accurate line
configurations within the equipment.

13.2.1 Related parameters

One often finds devices specified in terms of V.S.W.R., reflection coefficient, return
loss, insertion loss or attenuation, isolation, etc., the latter quantities invariably being
expressed in dB. These parameters are only fully meaningful if the source and load
terminations are specified, almost invariably as matched loads. With matched
conditions '

Is;] = input reflection coefficient magnitude (13.1)

and = V.S.W.R. at the input

(13.2)
with similar expressions for the output. Return loss is simply the reflection
coefficient expressed in dB and, with matched terminations, the insertion losses are
|s¢g] and |s;| expressed in dB. Attenuation normally refers to a symmetrical device such
as an attenuator, for which |s¢| = |s;| and for which |s¢] < 1. When |sg] > 1, one
speaks of gain (as in Chapter 11). Isolation and coupling are also scattering
parameters expressed in dB in the specification of a multi-port network such as a
hybrid, a directional coupler or a circulator.
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A nomogram relating many of these quantities in the context of a transmission
line appears as Figure 1.5.

13.2.2 De-embedding considerations

It may not be possible to make measurements on the DUT directly. For example, it
may be necessary to mount a transistor in a test circuit with microstrip connecting
lines, with the lines themselves terminated in coaxial connectors. The transistor s-
parameters are then to be deduced from the external measurements. For accurate
measurements a very precisely constructed test jig may be used. The term de-
embedding refers to the procedure of deducing the parameters of a DUT from the
external measurements, as in [13.7].

If the connecting lines, including the microstrip/coaxial transition, from the
DUT to the outside world are just straight-through lossless transmission lines (or
close enough to that), then de-embedding is only required to recover the correct phase
information, as the s-parameter magnitudes are correctly given by the external
measurements. For accurate measurements, de-embedding requires knowledge of the
properties of the test circuit or the test jig. These characteristics have to be measured
by replacing the DUT with devices that have precisely known characteristics, say
short-circuits or matched loads. De-embedding when precise measurements are
required generally involves rather complicated formulae and is best done with the
help of a computer, as shown in [13.8].

13.3 MICROSTRIP LINE PARAMETERS

In this experiment, the characteristic impedance of a line and the relative permittivity

of a substrate are measured. The experiment uses a straight length of high impedance

line that is terminated at each end with coaxial connectors as described in Figure 10.2.

The line length should be at least 1.5A long at the highest frequency that will be used.

This naturally assumes that an estimate of the relative permittivity of the substrate is

available. On the same basis, a line impedance of 80Q, say, being greater than the

50Q characteristic impedance of the measuring equipment, is selected. In order not

to have significant changes in the line properties due to dispersion, §4.4, the

maximum operating frequency should be chosen such that (fxh) is less than, say,

3GHz.mm. The basic equipment required to make these measurements is

_ avariable or sweep frequency oscillator, say 1.0-2.0GHz,

- astanding wave detector in a 50Q line and a V.S.W.R. meter,

— a frequency counter (altematively the free space wavelength deduced from the
standing wave pattern could be used),

— a matched load for the 50 line.

The microstrip test section is considered as an impedance transformer with a
characteristic impedance Zy and of fixed physical length /, but of a variable fraction
of a wavelength when the frequency is varied. Witha matched load attached to the
output connector, i.e. a load impedance Zj, the input impedance Z;;, at the junction of
the input coaxial line to the microstrip line is given from (1.54) by

_ Zocos(B) + jZpsin(Bl)
B Zrcos(Bh) + jZgsin(B) (13.3)

Zin
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The phase coefficient, B, for propagation along the microstrip line is given by

p = 2F - 2myeeft
A Mo (13.4)
M
and N (13.5)

where A and Aq are the guided and free space wavelengths respectively. Equation
(13.3) demonstrates the special properties of the transmission line when P/ takes the
following values:

i) Pl=nm, where n is an integer. This gives Zj; = Zy.

ii) Bl =nmn/2, where n is an odd integer. This gives Zjp Zg = Z12-.

In the experiment, the frequency is varied until conditions (i) and {ii) are achieved in
turn. When condition (i) is achieved, / becomes an integral number of A/2, from
which € may be deduced. When condition (ii) is achieved, Z;, is measured and Z
deduced from «ZZjp.

The experiment will now be described in more detail using typical, and possibly
idealized, data. Consider a line length /=225mm between the two coaxial
connectors and let the effective line width, allowing for any finite thickness of the
line, be w =h=1.5mm. A matched load (50Q) is connected to one end of the test
microstrip line, the other end of which is connected to the 50Q standing wave
detector line. As the oscillator frequency is varied, the input impedance normalized
to 500 traces out the locus on the Smith Chart, Figure 13.3a. This is now
interpreted, or directly plotted, as the variation of the input V.S.W.R. with frequency,
Figure 13.3b. From the V.S.W.R. plot in Figure 13.3b, a minimum value that is close
to unity is measured at 1.398 GHz and next at 1.864GHz with increasing frequency.
Line properties, determined from either wavelength or frequency, are found from the
sharp minima in the V.S.W.R. response rather than the very much broader maxima.
At the two frequencies for a V.S.W.R. minimum, condition (i) above is satisfied with

w
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Figure 13.3 (a) The locus of the input impedance normalized to 50Q of an unknown
microstrip line terminated with a 50€ load, and (b) the V.S.W.R,, both as a function of
frequency
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a line that is nA/2 long at 1.398GHz and (n+1)A/2 at 1.864GHz. Thus, n=3. At
1.864GHz, Ay = 160.8 mm and since (3 + 1)x(A/2) = I then, from (13.5)

_ N _ 1608
Vet = 3 T 125 (13.6)
ie. Eef = 2.044

The substrate relative permittivity may be derived from the effective permittivity
value and w/h, if the effective filling factor, q, is known. The apparatus has been
designed, it will be remembered, with the specific choice of w/h=10. Kobayashi
[13.9] gives q for values of € and selected w/h, including w/h = 1.0. From this data,
gefr for each value of € may be derived and an algebraic expression €egr = f(€;)
obtained. Now the following calculations are made to determine &

i) €., following the procedure given in the example above,

N
Eeff '
iii) A, where A = 1.506B ~0.649B% +0.143 B> when w/h = 1.0,
iv) ¢ = 1
T 1-A"

Hence, with €q¢ = 2.044, the following values are obtained:
B=05108 A=0.6190 and & =2.62.

Z determination

The peak V.S.W.R., Spax = 3.1, in Figure 13.3b occurs at those frequencies where
the line length is an odd multiple of A/4. From condition (ii), Zp = VZin Zo and
further Z;,/Zg = Smax- Note that it is also possible for Zj3/Zy=1/Smax. However,
this latter Z;, may be eliminated, since in the former case there will be a voltage
maximum at the input plane to the line, but a voltage minimum for the latter. With
Smax = 3.1 and a 50Q characteristic impedance for all other lines, Z = 88.0 Q2.

As a cross-check with the known line geometry of w/h =10 and a measured
substrate permittivity of 2.62, it is found from Table 3.2 that Z; =88.5Q.

Discussion

This experiment has been presented with an ideal set of results that may or may not

be representative in practice. The reader is invited to consider the effects that may be

observed in the results and possible solutions to improve the results as a consequence

of

i) excess shunt capacitance at the coaxial line to microstrip junction,

i) an imperfect matched load,

ili) the voltage minimum on the standing wave detector broadened by the
background noise level,

iv) two voltage maxima along the standing wave detector having unequal
magnitudes,

v) aclose to, but non-integer, value for n,

vi) attenuation along the microstrip line,

vil) Zy = 5S0Q.

i
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Other methods are suitable for the accurate measurement of €. The
measurement by Das et al. [13.10] of the difference in electrical path length between
two identical lines, differing only in length, may be used to determine the frequency
dependence of gef. As 50Q lines are desirable for the method, to some extent it is
assumed that the permittivity is already known. Cavity methods [13.11, 13.12], that
make use of a section of substrate material metallized to form a waveguide cavity,
directly measure the relative permittivity of the bulk material at the resonant
frequencies of the cavity.

13.4 DISCONTINUITY MEASUREMENTS

A collection of resonators that are coupled to their individual input lines through
series gaps is fabricated on a substrate, as shown in Figure 13.4. Identical line widths
giving 502 characteristic impedance and identical series capacitance gaps are used
throughout. The size of the gaps should be about one-third of the substrate height.
This will give a sharp resonance for an accurate measurement of the resonant

INPUTS
@ 3
(i) I
p—hi—
Gi) —JC—— 1 Ly =2f+h
e I .}
(iv) IC - ]
) 1
A
(vi) - 4

Figure 13.4 A schematic diagram showing full- and half-wavelength resonators that
demonstrate the effective length of compensated corners in (i) and (ii), the effect of open-
circuit and series-gap capacitances in (iii) and (iv) and the effect of uncompensated corners
in (v) and (vi). (Not to scale.)
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frequency. For convenience, each input line may be connected to its own coaxial

connector. Frequencies are selected which, after discontinuities have been taken into

account, make the resonators one wavelength long, except for resonator (iii) which is

only A/2 long.

The basic equipment required to make the measurements consists of

— avariable or sweep frequency oscillator, say 1.0-2.0GHz,

—  abroadband directional coupler and a crystal detector to monitor the magnitude
of the reflected wave,

— afrequency counter.

The average of two frequencies, at which equal magnitudes of the reflected signals
close to but on each side of the resonant frequency are observed, should be used to
determine the resonant frequency. This approach is more accurate than trying to
determine the frequency for the minimum reflection that may either be quite broad or
within the noise level.

The effective permittivity and open-circuit line extension

In Figure 5.2, it is observed that the open-circuit fringing capacitance for a 50 line
on £, =2.5 substrate is equivalent to a line extension of approximately (0.5xh). The
equivalent line extension for a very wide series gap, §5.6, will also tend towards the
same value. Thus, as the fringing capacitances at the open circuit and the series gap
for either resonator (iii) or (iv) will together be equivalent to a line extension Al of
approximately h, resonator (iv) should resonate at about the same frequency as (iii) if
its length J;, +h = 2(f; + h), ie. fy = 24;+h At resonance, the input signal will
be coupled into the resonant lines. Power will be absorbed by the losses within the
resonator. This will be observed as a sharp dip in the reflected signal from the
structure. The reflected signals from (iii) and (iv) are monitored in turn as frequency
is varied and the resonant frequencies fij and fj, are measured for each case.
Comparing (iii) with (iv)

Mii c

hitAl = S8 o

2 2feer (13.7)

Lo+Al = ky = ——

v W (13.8)
. c 1 1
1.e. € = _ | - ——

off [(liv—liii) [fiv 2fiii” (13.9)

Equation (13.9) assumes that the end effects in (iii) and (iv) are unchanged by any
small differences between fj; and f,. The sum of the open-circuit and series-gap
capacitances as an effective line extension, Al, may now be determined through

Al = —S——— [
2 Ve (13.10)

90° corner reactances

Resonators (v) and (vi) are designed to measure the equivalent circuit inductance and
capacitance components of a right-angle comer. The total lengths of each resonator,
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I, and I;, measured along the inside edge of the corner, are equal to /j,. The corners
will increase the overall length of each resonator and reduce the resonant frequency
compared with f;,. The equivalent electrical lengths are a wavelength at their
respective resonant frequencies, f, and f,;. For (vi), with the corner at the center of
the resonator where there is an open-circuit impedance plane giving maximum
voltage and zero current, the increase over ljy in its equivalent electrical length at fj,
determines the shunt capacitance of the corner.

Assuming identical end effects included in an equivalent length Al and eeff
independent of any small frequency changes, then in terms of the free space
wavelengths

Neeg iy +AD = Miv) (13.11)
. fi,

d VeegUy+ Ao+ a) = A = g

an e lvi+ Al +a) = NP = A (13.12)

where Al©) is the equivalent line length due to the shunt capacitance of the corner at
an open-circuit plane. Thus

_fi_v_I] Miv)

(i~ i)
feew " (13.13)

From (5.3), the shunt capacitance of the corner at an open-circuit plane is given by

c. = Balo _ Veerr Ao
¢ wZy cZy (13.14)
For (v), the comer is at a short-circuit impedance plane with maximum current
and zero voltage. Similarly the increase from ;, in the equivalent line length at fiv

determines the series inductance of the corner
_ eegZpaly
Cc ~ ——c_‘—

Alcy = [

L (13.15)

From these results, it will be found that the square corner reactances are not
optimized for a 50Q line, but that \L¢ JCc < 50Q. This is verified by the fact that
the resonant frequency of the line that includes the corner capacitance is lower than
when the corner inductance is included, i.e. f,; <f,.

The compensated corner

Resonators (i) and (ii) are identical to (vi) and (v) respectively, except that the corners
have now been mitered to reduce the excess capacitance. Ideally this will make the
corners behave as a short length of 50Q line, irrespective of the impedance at the
plane where they are situated. Thus the resonant frequencies f; and fj; should be equal
and, since it is excess capacitance that has been mainly reduced by mitering, should
be closer to f, than f,;. The equivalent length extension due to the comner, Alc), is
given by

Alcy = Al =

fA iv)
[w ] A — -1y

G| VeEew (13.16)

|
|
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Appendix 1
The finite difference
method — applied to microstrip lines

There are many problems associated with microstrip lincs, where a rigorous solution
is considered too difficult and the fields are analyzed using numerical techniques. In
this appendix, aspects of the finite difference method are studied in reasonable detail,
so that the reader may be able to appreciate what has to be done to solve the problem
of evaluating the capacitance of a microstrip line in a variety of situations. The
capacitance values lead directly to the characteristic impedance and propagation
coefficient for the line. The finite difference method is particularly useful if the
microstrip line is situated in a shielding enclosure that limits the extent of the fields in
the transverse plane. Other areas of use include the even- and odd-mode capacitances
for parallel-coupled lines and the excess capacitance that is associated with
transmission line discontinuities.

The numerical evaluation of the parameters of several transmission line
configurations has been obtained using the finite difference method, e.g. [A1.1, A1.2].
The capacitance of any two-conductor transmission line may be found from a
knowledge of the charge on the conductors and the potential difference between them.
Let V(x,y) be the potential function throughout the cross-section of the transmission
line, with the strip at a fixed potential above that of the ground plane. The continuous
function V(x,y) must be a solution of Laplace’s Equation in two dimensions
Lo AR
oxt  oy? (AlD)
subject to the appropriate boundary conditions. In the finite difference method, a fine
mesh is superimposed on the cross-section of the transmission line, Figure Al.1, and
only the values ¢, of V(x,y) at the nodes of the mesh are considered.

ViV =

The discrete form of partial differential equations

The partial differential equations are written in a finite difference form involving the
potentials at the adjacent mesh nodes illustrated in Figure Al.l. Terms of the form
92V/3x? are replaced as functions of ¢, along the x-axis. Consider a function f(x) as
shown in Figure A1.2, having discrete values ¢p at nodes along the x-axis. In this
context, it will be more convenient to use the notation f, for f(x), etc. The first
derivative at a point x

fx = & (AL.2)
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/ y h
=27 ]
z D
: i X h

Figure AL.1 A typical mesh for the finite difference method

may be approximated by the forward difference formula

£ = ¢n+l - ¢n
x - h (Al.3)
or by the backward difference formula

£ = ¢n - ¢n—1

L h (Al4)

These two difference formulae generally give different results. Thus the central
difference formula, which is an average of them and does not include the value of the
function at the node at which the derivative is being found, will give a closer estimate
of the derivative. The central difference formula is illustrated on Figure Al2 and
gives fy as
dn+1 — On-1

2h (A15)

A measure of the accuracy of these finite difference expressions may be obtained
from a Taylor expansion of fy,y, and fx_p.

fy =

fxeh = fx + hix + %hzf),(, + 'tls'hsf”‘" o (AL6)
fon = fx - hig+ 1026y — 2067 + - (ALT)
fx
on T central difference
formula
|
on T
bno T

|
|

x—h X x+h
Figure A1.2 The potential function in one dimension
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fx 4

¢n-1 1 i x
|
| i

oo+ |
| |

ne1 T | |
-t
x=h e X gk x+h

Figure AL.3 Inter-mesh points (x £k) for evaluation of the second derivative at x

Using these expansions, it is seen that the forward and backward difference
formulae will have errors of the order of h, while for the central difference formula
the error is of the order of h?. Thus, for an accurate representation of the problem, it
is seen that there is an advantage in
i) using the central difference formula, and
ii) using a mesh size, h, as small as possible.

In deriving an expression for the second derivative, consider two intermediate
points along the x-axis at (x—k) and (x+k) as shown in Figure A1.3, where k = h/2.
Using the central difference formula for the first derivative but with half the original
interval gives

) _ ¢n+l - ¢n
X+k = h (A1.8)
d , Ot
an x% = h (A1.9)
The second derivative at x now becomes
o = frax — fxx
L h (A1.10)
ie £ = ¢n+l ” 2¢n + ¢n—1
= x = h2 (A1.11)

This expression has an error of the order of hZ.
Consider the general node, E, as illustrated in Figure Al.1. Atthis node

fr +f =0 (A1.12)
Therefore
bc 29+ 0a . ts~20g + p _ 0
h? h? (A1.13)
or ,0a + 0 + 0c + ¢p — 46 = 0 (AL.14)

{
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In a two-dimensional finite difference solution of Laplace’s Equation, (A1.14) is the
equation that is generally used, except for special cases such as occur at boundaries
and discontinuities.

Higher order representation

The three-node representation for the second order derivative (Al.11) is identical to
the result that would be obtained if a quadratic equation were fitted through the three
node potentials and differentiated twice with respect to the direction x at the center
node. A quartic equation in terms of the node potentials at five points, namely
(x—-2h), (x—h), (x), (x+h) and (x+2h), when differentiated twice at x=0 gives an
improved representation for the second derivative with an error in the second
derivative of the order of h*, This second derivative at x is

“Ix-on t+ 16fx—-h - 3Ofx + 16fx+h ~ fx+2h
1212 (AL1.15)

4
fy =

Unequal node spacings
Unequal node spacings commonly occur when the boundaries of the system do not
coincide with the nodes of a regular mesh. With the final length of cth to a node that
has been placed on the boundary, such that there are three nodes at (x—h), (x) and
(x+ch) as in Figure Al.4a

2
ff = ———{a
X oo+ 1) h? (Al1.16)
It is usual in this equation for 0 < o< 1. However, if o is very small it may be

advantageous to omit the node near the boundary, leaving the final mesh length to the
boundary with o greater than but close to unity. This is illustrated in Figure A1.4b,

fx-n — L+ fx + fx,on

Boundary conditions

Two commonly used boundary conditions are the Dirichlet and Neumann boundary
conditions. Consider a microstrip line where {$} represents the discrete values of
V(x,y). The boundaries of a system impose constraints on the potentials and fields
within the system. The Dirichlet boundary condition requires that the potential along
the surface, V(s), is a constant, i.e.

pe—— h —————|-—ah——€

¢ (a) O<axl
x-h X X+ oh
'+ BOUNDARY
fp— b — ah .
OMIT * (b) a>1

x~h X X+ oh
]

Figure Al.4 Node selections adjacent to a constant potential boundary, showing (a) the
general selection of unequal node spacings near a boundary, and (b) a preferred selection
with & > 1, if & would be very small otherwise
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V(s) = x (A1.17)
An example of the Dirichlet boundary condition would be a microstrip line where the
dxs.crete potentials on the ground plane must satisfy x = 0, while for the conducting
strip x = 1 volt. Although in both cases there will be nodes placed on the boundaries,
these node potentials will not appear as variables in the final matrix equation since
they are constant.
The Neumann boundary condition is
oV
EY
N | surface (A1.18)
where n is the normal with respect to the surface. The elements of {¢] that lie on the
boundary, being unknown potentials, will remain as variables in the final matrix
eguat‘ion. With electric potentials, this boundary condition represents either an open-
circuit plane or a plane of symmetry at which the magnitude of the potential is a
maximum. The second derivative at the boundary is given by (A1.11) when an image
node has been introduced outside the boundary as illustrated in Figure Al.5.
Equation (A1.18) is satisfied if
Op1 = Opey (A1.19)

Thus applying (A1.11) at the boundary
®nv1 = 200 + On _ 2 o o

h? Cop2 ™t (A1.20)
When there is a plane of symmetry at which (A1.18) applies, P(A1.20) is still used,
thus omitting the potentials in the image region, in order that the problem may be

formulated in terms of the potentials of one half of the system together with those
potentials that lie on the plane of symmetry.

’”
fy =

Boundary between two dielectric materials

The boundary between two dielectric materials that have relative permittivities £; and
&, is illustrated in Figure A1.6.

A finite difference equation may be derived in terms of the potentials in the
vicinity of E by considering the surface, S, around the node. From Gauss’s Law, the
total electric flux flowing outward through the surface is equal to the charge enclosed.
For an ideal dielectric material with no conduction current flowing, there will be no

¢n—l 3 ¢n ¢n+1
- X
THE IMAGE REGION THE SYSTEM
-—
BOUNDARY

Figure A1.5 The image node representation for the Neumann boundary condition
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Figure AL.6 Nodes at the boundary between two dielectric materials

free charges on the dielectric interface. Thus, at the boundary of two isotropic
dielectric media

JDods =0 = _fslVV-dsl + j@VV-dsz =0
S Sz (A121)

where S; and S, are the sections of the surface, S, in each dielectric region. Applying
this equation at E in Figure AL1 gives

50[81 ¢B;¢E e %;4’5 . (51;92) [%;4’5 N ¢A;¢E] -0
(A122)
e, (g +E)0a+280p+ (e +E)bc+2820p—4(E1+E) 0 = O
(A1.23)

The treatment of singularities

Equation (Al.14) results from the difference equations that represent Laplace’s
Equation in a Cartesian coordinate system. The principal error terms are those given
by the 4™ order terms of the Taylor Expansion. At a singularity and its neighboring
points, the error terms do not converge [A1.3] and significant errors in the evaluation
of the stored electrostatic energy and capacitance may occur.

However, if a branch type singularity, for example the edge of the strip of a
microstrip line, is considered and taken as a local origin, it will be possible to solve
Laplace’s Equation uniquely in this region in terms of cylindrical coordinates, (r, 6).
Thus

VZV — 1-2__82_V+r§l+_ai! —

o o 082 0 (A1.24)

with a solution
[s2]
k
vV = M (Acos(nd) + Bysin(ng)), n=I%
kfv:,, (A ) « (A1.25)

where Ay, By are constants and o is the angle of the singularity that equals 27 for the
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Figure AL.7 The geometry of an edge singularity

edge of a thin strip, as shown in Figure A1.7. Note that in (A1.25), n varies with k in
the summation.

The strip is at a constant potential which may be taken as zero for the solution of
(A1.25), with a constant added as necessary to all the potentials in the region. Thus,
Ay = 0 because of the assumed zero potential, giving

@
V= Vp+ Z By " sin(n)
[y (A1.26)
The negative values of k in the summation are not required, as demonstrated by the
following argument. The potential must be constant within a small enough region
near the singularity. In particular, it must be constant, say Vp, on a small circle of
radius 1, that excludes the singularity as shown in Figure A1.8, requiring fork>0

B_y 15 "sin(-n6) — By rfsin@m) = 0 (A1.27)
ie. By = -Bprd® (k=12,--") (A128)

This equation must be true in the limit as ry — 0, implying that B_y = 0 for all
positive k.

In [A1.3] the edge singularity was placed at the center of the mesh and was
equidistant from the four surrounding nodes. Later work, [A1.4, Al1.5], placed the
singularity at a node with two advantages, namely: (i) equal mesh lengths were
preserved to nodes elsewhere on the constant potential boundary, and (ii) a more
detailed cylindrical representation of the potential variation could be derived.

For a thin strip in a uniform dielectric medium with even symmetry for the
potentials about the plane of the conductor, Figure A1.9, the potential variation
reduces [A1.5] to

4
Vo= Y BrCk-D2gin | 2oL le]
k=1 (A1.29)
/V=Vro

// /0 \\
1
A 1
\ 7z

Figure A1.8 Excluding the singularity by a small circle of radius rg
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Figure AL9 A strip singularity in a uniform dielectric medium

In this symmetrical situation, for example in a balanced strip transmission line, the
seven nodes adjacent to the singularity have only four independent values which may
be expressed by the four unknown node potentials at A, B, C and D. Taking the strip
at zero potential, the infinite summation has been reduced to the four terms in (A1.29)
for which the coefficients By may be evaluated. The factor (2k ~ 1)/2 in the sine term
produces an even symmetry with k=1, -+, 4, as an alternative to taking only the
odd integers from k=1, ---, 7. Four simultaneous equations may now be formed,
expressing the potential at each of A’, B’, C’ and D’ in terms of By, k=1,---,4.
Solving for By expresses the By in terms of $a> * -, Opr. Moving closer now to the
singularity ¢,, -*- , ¢p can also be expressed in terms of By and thus in turn in
terms of ¢p, -+, ¢p, giving

O 0.2500 02608 0  0.0236 | | o,

g 0.0653 0.4130 0.0769 0.0937 | | ¢g-

N 0 03080 0.2500 0.2844 | | ¢

oo 0.0118 0.1876 0.1422 0.4129 | | ¢p (A1.30)

This approach with the cylindrical coordinate form of Laplace’s Equation provides a
more accurate representation for the variation of the potential near the edge of the
strip.

In the case of a singularity associated with the strip of a microstrip transmission
line, the situation is similar to that in Figure A1.9, except that now there is no
symmetry with respect to the plane of the strip at the singularity because of the
presence of only one ground plane. Now the infinite summation is carried out with
seven terms as

! 2 kO
V = B sin |=—
g:l k [2 ] (A1.31)
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and potentials at seven points have to be considered. Otherwise the procedure is as

before. The following relation between Oa. ** ,dg and Bpr, - -° , 9 is obtained.
(
Oa 0.2500 02554 0 00236 0 00054 0 Op
g 0.0639 0.3940 0.0697 0.0937 0.0072 0.0190 0.0014 g
oc 0 02790 02500 0.2844 0 0.0290 0 ¢
$o | = [0.0059 0.0938 0.0711 0.4129 0.0711 0.0938 0.0059 Op
o 0 00290 0 02844 02500 02790 0O O/
(13 0.0014 0.0190 0.0072 0.0937 0.0697 0.3940 0.0639 O
¢GJ 0 00054 0 00236 0 02554 0.2500 dg
(A1.32)

In this way the cylindrical coordinate solution of Laplace’s Equation in the vicinity of
a singularity may be linked with the Cartesian coordinate solution elsewhere in the
system. The expense of having to introduce a least squares fit for the seven By
coefficients in this example so as to include additional nodes, such as those between
A’ and B', is not warranted. Indeed, using only the radial variation of the k = 1 term
of (A1.26) to the nodes B’, D’ and F” with an appropriate interpolation for B, D and F
[A1.6], the percentage errors of microstrip line capacitance calculations were reduced
by more than a factor of 10 compared with the results obtained ignoring the effects of
the singularity. For the symmetrical case, where ¢y =g, ¢g-= ¢ and ¢ = Og,
(A1.32) reduces to (A1.30). For the microstrip transmission line with a dielectric
substrate, relative permittivity €, the boundary conditions at the air-dielectric
interface must also be satisfied. From [A1.4], the potential in the air region is given
by (A1.31) while in the dielectric region

4 2%k -1
V = Zsz_l r(2k_ 1)/2Sin {T_e
k=1

3
1 .
+ =3 By ¥ sin(k6)
Er (A133)

For each particular substrate material with a relative permittivity, €, an equation
similar to (A1.32) must be derived and used in the solution of the potential
distribution for a microstrip transmission line.

The electric field strength across the ground plane

After the potential distribution at all the nodes throughout the cross-section of the
microstrip line has been evaluated, to calculate the capacitance it is necessary to do a
surface integration of total electric flux density around one of the conductors. Before
this can be done, the electric field must be evaluated from the potential distribution
just obtained. Any closed surface may be taken in principle. The actual surface of
the strip conductor is a poor choice for the surface, because of the singularities and
the rapidly changing electric field at the strip edges. Intermediate surfaces may be
used, but it is probably easiest to form the surface across the complete ground plane.
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Figure A1.10 Nodes and their potentials on a normal to the ground plane

Consider the equidistant nodes that lie on a normal to the gr i
ound pl
A1.10. AtP, the electric field strength ground plane, Figure

T T Th (A134)

vs{here gy is the g‘radic;;nt or tangent to V(x) as a function of x at the ground plane. The
SImples.t approximation would be to take E at P to equal g;. A more accurate
evaluation could be done as follows. Now

_ $a—¢r
8a =
h (A1.35)
and as a first approximation
_ 81t8 2(¢9a — ¢p)
g = ——— o gyt = —
a D) g1 T8 h (A1.36)
However g, = gy = ik
2h (A1.37)
Thoretore g, = 2Ba=8) _ 0nte
h 2h (A1.38)
‘. g = —~3¢p + 400 — ¢r
. 2h (A1.39)
This same equation may be found by fitting the polynomial
V(x) = a + bx + cx? (A1.40)

to the node potentials at x = 0, h and 2h, differentiating wi

I \ s g with respect to x and then

;t?mng x=0. Thus, f'rom. (A1.40), g, = b. This latter approach may be used with
igher order polynomials if the node density along the normal is sufficiently high to
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warrant it. It may also be used whenever there are unequal node spacings along the
normal.

Integration to calculate the charge

The electric field strength and the electric flux density are known now at discrete
points across the ground plane. The total flux, ‘¥, and therefore the enclosed charge,
is evaluated numerically from the electric flux density. Let Dyp, Dy and Dap be the
normal components of the electric flux density at adjacent nodes that are equally
spaced with a separation, h, across the ground plane. For this 2h width of the ground
plane, the trapezoidal rule for integration gives the flux and charge contributions

(Dig + Db (D2p + D3p)h

AY = AQ = 5 2 (A1.41)
. (Dyp+2Dgn + D3pdh 3
ie. AQ = > + O@) (A1.42)
Using Simpson’s Rule across the full 2h width gives
(D) +4Dyp + D3p)h 5
aQ = 3 + Om) (A1.43)

This and other integration formulae are found by fitting the appropriate order
polynomial to the data points and integrating over the region. The number of
intervals for which a AQ is found using (A1.42) or (A1.43) is inversely proportional
to the interval length, h, and the error terms in the calculation of the total charge on
the ground plane are of the order of h? and h* respectively.

Example Al.l

The details of a complete two-dimensional problem are too long for presentation here.
However, the techniques involved may be illustrated in this example where the
capacitance of a parallel plate capacitor may be found.

Using the finite difference method, find the potential variation between the
plates for the system illustrated in Figure Al.11. Calculate the capacitance per unit
width and length. Compare the result with the true value for the parallel plate
capacitor.

Solution:
For the width tending to infinity, the system is a one-dimensional one, as

o V=41V L
\ g =10 10 mm
VvV = 0V

Figure Al.11 The geometry of a parallel plate capacitor




304 Appendix 1

& =40 | & =10
L ! ¢ =0V
| e ey
(o5} 173 O3 04 0s 0
ov) | vy
X

Figure AL.12 Nodes in one dimension for a parallel plate capacitor

illustrated in Figure A1.12. Equally spaced nodes are placed between the two
plates. In one dimension, Laplace’s Equation becomes

dav 0
dx?
If the distance between the nodes, h, is one unit (=2 mm), then
d%v
E =0 = 6p—2¢y+0y =0

This is the equation that is applied at nodes 2, 4 and 5, i.e. for n = 2,4,5. Node 3
lies on the dielectric/air interface. At this boundary, the normal component of the
electric flux density must be continuous, i.e.

eVE)y = 81"(2)]'32n
Expressing this equation in finite difference form
Er(93-0)  (94—93)
h h
giving &by +(er + 13 - ¢4 = 0

Equations may now be formed in terms of the four unknown node potentials and
expressed in matrix form as

-2 1 00 ¢, 0 <+ - at ¢, node
-4 5 -1 0 |!o¢3 0 -+ at $3 node
0 1 -2 1 1]i¢s0 T {0 -+- at ¢4 node
0 0 1-2 0s -1 *++ at ¢s node
Solving gives
¢, 0.0714
03 0.1429
o4 T [0.4286
o5 0.7143
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The capacitance is calculated from the charge per unit area on the plates for
a known potential difference between them. The charge on either plate may be
used since they are equal in magnitude. On the plate with a potential of 1.0 volt

Q = Dy = gE,
o o B0

With h = 0.002 m, the surface charge density
Q - 8854x1072(1.0-07143)
0.002

= 1265 nC.m>2

With a 1.0 volt potential difference between the plates, the capacitance of the
plates is 1.265 nF.m™.

The exact solution for the capacitance is obtained by treating the system as
two parallel plate capacitors C; and C,, connected in series, with the air-dielectric
interface representing an equipotential surface between the two capacitors. The
capacitance per unit area in the dielectric region

(o} E’dﬂ = % 1000g, F.m™
Likewise ~ C, = 166.7¢ F.m™2
giving C = ©1G = 142.9¢,
Ci+G
ie. C = 1265 nF.m™32
Note

In this example, the finite difference method has given an exact solution for both the
potential distribution and the capacitance. This is because, being a one-dimensional
problem and with the second derivative of the potential being zero, (A1.3) and (A1.4)
represent the potential variation exactly. When the potential varies in a more
complicated manner in two (or three) dimensions, the finite difference method will
only lead to an approximate solution. However, the steps taken are similar to those
presented in this example.
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This method, known also as the method of moments, is used to calculate the
capacitance associated with a system of conductors. As described here, the quasi-
! static capacitance of a thin microstrip line will be evaluated. With minor
% enhancements, the approach may be used for capacitance calculations of thick
lb microstrip lines [A2.1], lines with anisotropic substrates [A2.2], coupled lines [A2.3],
open-circuit fringing capacitance [A2.4,A2.5], steps and gaps [A2.6,A2.7) as well as
bends and junctions [A2.8].

Consider a uniform transmission line in free space that may be taken in cross-
section as a two-dimensional problem. The electrostatic potential at the field point
Pj = (xj,y;) due to a unit charge at the source point P; = (xj.y;) is found from (3.38)
to be

1 a3 7

G(PJ‘PI) = - 21[50 In (Xj—Xi)"+(yj—yi) (AZI)

if all the conductors are removed except for the filament upon which the charge is

situated. The function (A2.1) is known as the Green’s function for the region. In

multi-dielectric problems, there will be different Green’s functions depending on the

relative locations in the dielectric regions of the source and field points. A

superposition of all the potentials due to the individual contributions of the charges

given by the variable charge density, P(P;), on the conductors leads to the integral
equation

Vo) = [ Gy p(Py) dPy (A2.2)

Of particular interest are the equations for the potentials at the conductors since these
are specified in capacitance calculations. Thus, if the conductors are subdivided into
a total of n sub-areas, it is possible to write (A2.2) for the potential at the geometric
center of each area, giving the matrix equation

where V is a column matrix of the voltages at the points (x;,y;) and q is a column
matrix of the charges at (x;,y;). In this case, as it is V that is specified. (A2.3) is
inverted to give

q=[pl'V (A2.4)
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and the total charge as well as the charge distribution across the conductors may be
found.

Before proceeding with an example that illustrates the power of the method as a
numerical technique for capacitance calculation, there are two points that need to be
noted.

Point 1 Planes of symmetry

Two strips with potentials +V may be used to represent the microstrip conductor and
its image that together give an equipotential surface of zero potential (the ground
plane) between them. Allowing for the symmetry of charge between the conductor
and its image, the complete system information is contained in the reduced size
matrix equation for the potentials of the elements of one conductor in terms of the
charges on that conductor and its image. Inverting the matrix and solving for the
sub-area charges on the conductor with a potential of 1 volt with respect to the zero
potential of the plane of symmetry leads directly to the capacitance of the line.

There is also a second plane of symmetry that passes through the center of the
microstrip conductor, the ground plane and the conductor image. The potential at
each point (x;,y;) on one half of the microstrip conductor may be expressed in terms
of the four symmetrical charge components, +q;, +q;, —~q; and —q;, and their
respective source to field point distances. In this way the matrix size for inversion is
reduced by a factor of 4, compared with the complete system that does not account
for symmetry.

Point 2 The handling of self-potential
The potential at the center of each sub-area is formed as a summation of the potential
contributions due to a charge at the center of all sub-areas. Furthermore, this must
include the potential at (x;,y;) due to the charge at (x;, y;), leading to a zero distance
and apparent infinite potential. This is overcome by no longer considering the (x;, y;)
charge as a point charge, but as a charge distribution over a small but finite
dimension.

Consider one sub-area as illustrated in Figure A2.1, with a uniform charge
density across its width. If the sub-area has a width ds; and total charge q;, then the
potential at the center due to an element of length dr at a distance r is given by

vy = oL 9
Vi v omey  ds; i@ dr (A2.5)
The integral over the right-hand half of the element is
a; ds; /2
VX, y) = -5 In(r)dr
G331 2megds; ! ® (A26)
dSi
r
[
% P(x;, y)

Figure A2.1 The geometry of one sub-area
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Using J'In (Odr = r(In(®)-1) in the integration of (A2.6) and doubling for the
complete element gives the self-potential of a sub-area as
q; ds;
V(x,y) = ——‘[ml—‘—}—lJ
2me, 2 (A2.7)
Example A2.1

Using tl}c method of sub-areas, estimate the capacitances of microstrip lines in free
space with w/h = 0.01, 0.1 and 1.0.

Solution:

Cpnsider the microstrip line and its image as illustrated in Figure A22. The
simplest situation is to represent each strip by one peint charge. It is cxpecied
that this will lead to good results only for very narrow strips, but for wider strips
more elements would be needed. The potential at Py due to the charges +q and
F};]q is found by adding contributions as given by (A2.7) and (A2.1) respectively.
us ’

q [
Vo= - ! -1- }
Ty L0421 = b A2s)
ie. Cc = 278y Fm™!
1+ 22 +Inh - Inw (A2.9)

Results derived from (A2.9) are presented in Table A2.1.

For. higher accuracy, the line and its image may each be represented by two
equal point ch.arges as illustrated in Figure A2.3. Because of the symmetry, the
'result is still simple enough to be expressed in one equation. The potential at P,
is given by

V =

- A’+B’—C’—D’]
2me, [ (A2.10)
where the four terms are

A = In(wi) - 1 due to the charge at P,

B = In(w/2) due to the charge at P,
C" = In(2h) due to the charge at Py
D" = (Va2 + (w/2)?) due to the charge at P,

- W

-_—
+q Py T
EQUIPOTENTIAL
SURFACE T T T T T~ Zh ~ - -
L B l

Figure A2.2 A single point charge representation for a microstrip line
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-q -q
P; P,
SYMMETRY PLANE

Figure A2.3 A two-point charge representation for a microstrip line

With a total charge of = 2q on each plate, the normalized line capacitance
£ _ 29 _ 4 '.
- T A -B+C+D (A2.11)

€9 Eov
Results derived from (A2.11) and the answer for Exercise 3.8 are presented in
Table A2.1.

Table A2.1 Normalized capacitance of a microstrip line in free space

Sub-areas per plate :
1 2 4 ;
Equation Equation Exercise Accurate value i
wih (A2.9) (A2.11) 3.8 from [A2.2]
0.01 0.899 0.919 0.930 0.940
0.1 1.340 1.385 1.411 1.434 i
1.0 2.633 2.795 2.890 2.980

Note

In Appendix 5 of Wheeler’s paper [A2.9], it is seen that a narrow microstrip line
is equivalent to two quasi-circular wires with equal charges, having a line
geometry as illustrated in Figure A2.4. This representation clearly shows that the
charge is not equally distributed across the strip but must be increasing towards
the edge of the strip. In solving Exercise 3.8, it is found for four charges equally
spaced across the strip that the outer charges are 1.856 times greater than the
inner charges. If the two charges on each half of a strip or its image are

—r—IN

Figure A2.4 The two-wire line approximation to a microstrip line

HALF-CHARGE CENTER
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Relative charges

q =10
qQ q q @ q; = 1.856
i b 43 = 2.856

0.575w

Figure A2.5 An equivalent charge distribution obtained by reducing four charges to two

1binca together as one, rintaining the product of (charge) x (distance from
strip center) to find the equivalent charge center, the result will be as illustrated in
Figure A2.5. There has been a definite movement of the charge centers from
0.5w apart as in (A2.11) towards 0.707w as given in the accurate equivalence by
Wheeler.

The use of images

In Figure A2.2, the single line-charge representation for a microstrip line, appearing
as a point charge in the transverse plane, was used in conjunction with an image to
solve for the capacitance per unit length of the line. The image charge was placed
such that an equipotential surface coincided with the ground plane. To this stage, the
microstrip line has been in a uniform dielectric medium, but now the mixed dielectric
problem of a dielectric substrate must be accounted for in the solution. Charges in the
vicinity of dielectric boundaries will be modeled in two stages:

i) A line charge in the vicinity of a flat and infinite boundary between two dielectric
materials is shown in Figure A2.6. At the boundary, the incident flux, vy, from
region 2 is split into two parts with Ky being returned into the region and the
remainder, (1 — K)y, continuing into region 1. Splitting up the flux leads to the
image charge of Figure A2.6 which, together with the original charge, is used to
determine the Green’s function for each region.

1) A line charge in the vicinity of a flat and infinite boundary of a uniform thickness
slab of dielectric material is shown in Figure A2.7. From the model by Silvester
[A2.1], the Green’s function is derived for each of the three regions shown in the
figure. The procedure of (i) is followed at each boundary and a Green’s function
is derived for each of the three regions shown in the figure. In general, there are
an infinite number of images, each of which is known as a partial image.

Consider the filament of flux, as in Figure A2.6, emanating uniformly in all
directions from a line source that is represented in the transverse plane by the point
charge, q [A2.1]. Ata point on the dielectric interface, some of the flux, Ky, will be
reflected and the remainder, (1 — K)y, will continue on into the adjacent dielectric
region. Applying the boundary condition that the normal component of the electric
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Figure A2.6 Flux from a charge near a dielectric boundary, showing (a) the flux lines,
and (b) the partial image charges to be used for each half-plane, from Silvester [A2.1]
(© 1968, IEE)
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Figure A2.7 The flux and partial image charges for a line charge in the vicinity of an
infinite dielectric slab of thickness 2h, showing (a) the flux lines and construction for the
images, (b) the image charges for the potential evaluation in the region which does not
contain the slab or the original charge, (c) the image charges for evaluation within the
dielectric slab, and (d) the image charges for evaluation in the region containing the original
charge, from Silvester [A2.1] (© 1968, IEE)
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flux density must be continuous across the surface, then
(1 -K)wysin(oy) = wysin(oy) — Kysin(oy) (A2.12)
ie. o = 0y (A2.13)

Applying the boundary condition that the tangential component of the electric
field must be the same on each side of the surface gives

ﬁ(l—K)\vcos(al) = é weos(ay) + Kycos(oy)

(A2.14)

ie. (1-K) = & (1+K) (A2.15)
« £ -1

or T Tl (A2.16)

Thus for a charge in free space above a homogeneous dielectric half-space, this
coefficient is independent of the angle of incidence and

-1<K<0

For the reflection of flux at an interface from the dielectric material to free space, K
will now be positive and have the same magnitude as before. Thus, flux lines that
have passed into the dielectric slab and out again have terms (1 ~K)(1 +K) =1 - K2
in their magnitudes.

The potentials in region 1 of Figure A2.6a may be derived using a charge with a
value (1 -K)q at x =a as shown in Figure A2.6b. In region 2 that includes the
original charge, the potentials are derived using the original charge q at x = a and the
image charge at x =—a. Note that there are never any image charges within the
region in which a potential is to be evaluated.

The Green’s function (A2.1) for region 1 now becomes

G(Pj:P) = - (-K) In((xj e - )

dnerey (A2.17)

while for region 2

G(Pj:P)) = - ﬁ In((xj~a)? + (yj=y0?) + Kin(Cxj + )2 + (3 -y
(A2.18)

A plot of the resultant electric fields in Figure A2.8 shows how the fields are drawn
towards the dielectric region.

Multiple images

Silvester [A2.1] has shown how multiple images are required to derive the potentials
associated with a charge in the vicinity of a slab of dielectric material, Figure A2.7.
Although the parallel flux lines only apply for a field point at very large distances,
they do locate the positions of the multiple images. The positions of these images.
together with the values of the image coefficients, are independent of the angle of the
flux lines to the slab surfaces. The potential at any field point may be derived from
the charge, its images and their respective distances to the field point.
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Figure A2.8 Electric fields from a line charge abovc a

A simple use of the infinite summation of images will be illustrated in the
following example. For further stages of refinement of the method, including the
setting up of appropriate Green’s functions, the representation of the charge variation
across conductor surfaces and the method for integration of the resultant integrals
within the summation, the reader is referred to the literature, e.g. [A2.1, A2.2].

Example A2.2

Estimate the capacitance per meter for a microstrip line with w/h=001 on a
substrate with e, = 2.5.

Solution:

In its simplest form, the microstrip line may be treated as a single sub-area with a
charge +q. The ground plane equipotential surface is maintained by placing an
image charge —q as illustrated in Figure A2.9. Each of these charges at A and B
now has its own accompaniment of partial image charges as required for the
dielectric slab boundaries. From Figure A2.7, it is seen that as the original charge
approaches the surface and a — 0, the potential at A due to the charge at A is
given by the self-potential of the sum of the charge itself, q, and the first partial
image, Kq, i.e. (1 + K)q. Thus, from (A2.7)

-]

2meg 2 (A2.19)
The remaining partial images for the charge at A sum as
- —K3a
v = - KU=K94 $ (20D (40h)
ney A (A220)

As the final result depends on the ratio w/h and not on the individual values
of w and h, for evaluation purposes take h = 1 and w = 0.01. The potential at A is
evaluated in three stages. The first two stages evaluate the potential at A due to
the charge at A and its partial images. The third stage evaluates the potential at A
due to the partial image charges associated with the charge at B.
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Figure A2.9 The geometry of a narrow line on a dielectric substrate

i) The self-potential of the charge and partial image that are placed at A is given
from (A2.19), with K =-0.4286 as

9. 1-04286 _
X | (0005 -1

_ 05728¢
£
ii) The other partial images from the charge at A, from (A2.20) give the potential

v

V=- 0‘05;68 [1.3863 +0.3819 +0.0838 + 0.0172 + 0.0034 + - - - }

_ _0.1043q
£
iii) Consider now the negative image charge at B together with its partial images.
Their contributions towards the potential at A are given with a
reinterpretation of case (b) of Figure A2.7 as

— 2 i
V= __e‘gx%lz(xﬂn—l)m(@n—z)h))
n=1

= 212999 16,6931 403291 +0.0777 + 00164 +0.0033 + - -
0

= 0.1454q
£

Summing together the three contributions
vV = 06139q _ g
€ c

ie. C = 144 pFm™!
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This result may be compared with an accurate result that is derived from
Kobayashi [A2.2] which gives C = 0.940¢; for a line in free space with
w/h=0.01. The effective filling factor of 05432 for & = 2.5 gives
€off = 1.815. These values give an accurate capacitance value for this line,
against which the derived value of 14.4 pF.m™! is to be compared, of
1.815%0.940xgy = 15.1 pF.m™\.
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Appendix 3
Microstrip line data

The data in this appendix are provided for use in the examples and problems that
spceify a substrate with €, =2.5. Quasi-siatic approximations are assumed
throughout. Specific w/h and Z; values are quoted in Table A3.1. These values are
used for the simple curve fitting equations that are provided if calculations with

intermediate line parameters are required.

Table A3.1 Microstrip line data forg; = 2.5

RELATIVE PERMITTIVITY = 25
Analysis Synthesis
w/h Zy, Q Eoff Zy, Q w/h €off
0.1 193.12 1.851 20 9.563 2.263
0.2 161.73 1.872 25 7.281 2226
04 130.52 1.900 30 5.777 2.193
0.6 112.44 1.924 40 3.924 2.137
0.8 99.80 1.946 50 2.837. 2.090
1.0 90.17 1.966 60 2.128 2.051
1.5 7339 2.008 70 1.635 2018
2.0 62.28 2.043 80 1.275 1.990
4.0 39.46 2.139 100 0.796 1.945
6.0 29.13 2.199 120 0.506 1.913
8.0 23.17 2.239 150 0.259 1.881
10.0 19.27 2.269 180 0.134 1.859

FOR ALL CURVE FITTING, 0.10 < w/h <10.0

ANALYSIS
Given w/h and with g; = 2.5, then the characteristic impedance is given by

Zy = et (A3.1)
where the exponent

X = XA {m(w/h)}i
i=0 (A3.2)
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The effective permlmvuy

Eeff = Z B; (In(wim)’ (A33)
SYNTHESIS .
Given the characteristic impedance, Zg, then the ratio w/h is given by
v = (A3.4)
h 4 i
with y = i=Zoci {In(Z4) - 4.0} (A35)

Now, knowing w/h, Ecg may be found from (A3.3).

Table A3.2 Coefficients for Equations A3.2,A3.3 and A3.5
i Aj B; G

4.5015 1.9657 0.9054
—0.4762 0.0950 | —1.5627
—-0.0832 0.0255 | ~0.3422
—-0.0046 | —0.0007 | —0.2215

0.0018 | -0.0014 | -0.0943

PO —=O

Appendix 4 Formulae for
parallel-coupled microstrip
transmission lines

These low frequency e presswns as given by Kirschning and Jansen [A4.1] (© 1984
IEEE), make use of normalized values for the strip width and spacin
w s
u=-— and = =
h £ (A4.1)

They are modified here only to the extent that consistent terminology is maintained.
A sample set of data with intermediate calculation values is provided in the table
following the expressions, to assist in checking any computer implementation of the
equations. Two equal width strips of negligible thickness are assumed. The two
expressions, Z,, and eqfr, as they appear in this section relate to a single microstrip
line of width w on the same substrate material and are derived from the analysis
formulae of Table 3.2. For the following range of parameters:

01 <u<100 01<g<100 10<¢e, <180

the errors quoted in [A4.1] are <0.7% for sé%}, <0.5% for sé?}, and <0.6% for Zg,
and Z,.

THE EVEN-MODE EFFECTIVE PERMITTIVITY

sée _ & +1 g -1 [l+ﬂ]—ae(v)xbe(er)

2t T2 v (A42)

2
with v = u@+g) + gxexp(—g)

10+ g2
= 1 VT4 (v/52)° 1 v |?
a(v) = 1 + 49><In[v +0432] 18'7><1n[1+ 18.1’ ]
g - 09 0.053
be(Er) = (.564 x 8;-'*'—30

THE ODD-MODE EFFECTIVE PERMITTIVITY

g +1 d
e = e + { r2 +a0(u,er)—eeﬁ~}x exp(—cyxg™°) (A43)
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+1

€
with  ay(ug;) = 0.7287 x [ Eoff — ] x(1 - exp(~0.179 u))

0.747¢,
boer) = 0.15+¢,

bo(er) — (bo(er) —0.207) x exp(~0.414 u)
0.593 + 0.694 x exp(~0.562 u)

Co
dO

THE EVEN-MODE CHARACTERISTIC IMPEDANCE

1
Ny
Zope = Zgyx [_eeg]z"‘ [1 - _—‘ee;ﬁ-.-.OQ4l
LEeff ) l Sreo (Ad4.4)

with Q; = 0.8695xu019
Q; = 1+0.7519g + 0.189xg?3!

10

g
+ x| — 8
241 "[1+(g/3.4)1°]

61-0.387
Q = 0.1975+[16.6+ ]

84
g

~1
Q = ZQ(? x [u°3xexp<—g) + u“°3(2—exp<—g>)]

THE ODD-MODE CHARACTERISTIC IMPEDANCE

Z =Zxﬁ}%+1__.___“£°ﬁz°Qw}
I 377 (A4.5)

: 0.638
with = 1.794 4 114 xn{1 4+ —— L0368
& [ g + 0.517x g2-43]

1 gl In(1+0.598 x g1-154)
= 02305 + ! .
% 2813 n[1+(g/5.8)l°J+ 5.1

Q = 10 + 190x g2
77 1+ 823xg3

Qs = exp(~6.5 - 0.95xIn(g) — (g/0.15))

Q = [Qg'*' 13.5] X In(Qy)

_ Q- & em(inw x Qs xu”%)

Qo

Q

Formulag for parallel-coupled microstrip transmission lines 321

Table Ad.1 Sample calculated values to verify the coupled-line equations

SAMPLE VALUES
u=23 g=05 g =25
EFFECTIVE PERMITTIVITIES
el 2.1649 £y 1.8870

v 4.8472 ag(u.€;) 0.0765
a(v) | 10010 boler) | 0.7047
be(er) | 0.5283 o 0.5127

d, 0.7835
MODE CHARACTERISTIC IMPEDANCES

Zoe | 66.84 Zy | 45.10
Q 1.0220 Qs 2.6237
Q 1.4141 Qs 0.2525
Q 0.1702 Q 5.0941
Q 0.7575 Qs 0.0000
Q 0.0987
Qo | ~1.4946

REFERENCE

[A4.1] Kirschning, M. and Jansen,R.H., "Accurate wide-range design equations for the

frequency-dependent characteristic of parallel coupled microstrip lines", /EEE Trans.
Microwave Theory and Techniques, Vol. MTT-32, No. 1, January 1984, pp. 83-90.
Corrections: /EEE Trans. Microwave Theory and Techniques, Vol. MTT-33, No. 3, March
1985, p. 288.




Answers to selected
exercises

1.1 333Q
L2 With [T| =0.1, i)1.22, ii) 1%, iii)20.0dB, iv) 99.0%, v)0.044dB
1.3 i) 1.164 > 1.284
14 0087dB, V.S.W.R.=605
1.6 i) (414-j28.0)Q
L7 T =062/297°, VS.WR.=4.27, [=873mm
1.8 i) (31.9-j41.0)Q
i) (42.0-j36.0)Q

21 i) 0 0316
0316 0 , magnitudes only
i lo e¥®

], where 6 = 2nr

e® o
0 —j
Whennk = %. 0= % , leading to [—-j 0
i) [n®*—1 _2n
n?+1 nf+1
i 2n 1-n?
I n?+1 n?+1
‘ -
iv) a) Yo% b) 1 joL 22 o
5% joL + 2z, | 22, oL |} [S1s wnitary
VoY ! - I where x = 1
1+ x2 { =j2x 1-x2 |’ Tk
b) i(1- x2) sin 2x
! 2 ! ¢. 2 . , where ¢ = 2nrx
2xcosd + j(1+x%)sing 2x j(1 = x*) sing
vi) ) o?-27¢ 20z, .
H t
i &+ 72 | ©2aZ, -7} [S] is unitary

! 0 0 1 |, magnitudesonly; [S] is unitary

323 |




324 Answers to selected exercises

viii) | 0 0 . .
1 0 | magnitudes only; [S] is NOT unitary
ix) 13 0 where £ = 1-joCZ,
-1+8gmZy 1|’ T 1+joCZ,
22 i) & |[HKh U b 0 % 4 <)
K -4 Hh % A Y
B % % B oY% Y
23 iii) Ss: 55,
1 .
—_— —_ +—
2 s+ 50D
s ssf\ 3so
[T
Sf Sp
ii = —, T, = ———
24 i) Tg 1= s, r g

iii) For [S], followed by [S],
1 Sit =S8y SniSp

(ST = 7Z SotSz | SISk So2~So1d:

32 i) O0417pF
33 i) 4.08mm
i) 7.22mm
34 (0.99+£0.04) mm
3.5 24.0Q-136.8Q

36 2323
37 339Q, 01057
41 9070

42 0046

43 i) 0.044dBA7!

44 Forcopperat 1.0GHz, §=2.09 um; at 10 GHz, §=0.66 um
4.5 ii) Forcopperat1.0GHz, A=045um

46 00028dB.cm™ (028 dB.m™)

47 35mm

49 0.7%

410 40GHz

5.1 964 MHz

52 i) 31Q, 16h/Agradian
53 i) 044

i) 044 +j0.01
54 (4999 +j0.38)Q, (50.02 + jo.ana
62 i) z =184-j2.52
63 i) z=070-j0.51
64 ii) 2.83pF, 0.76 pF
6.6 Z.=98.7Q, 1=0.1061
6.7  0.136A (nearer to the load), 0.162)

>

Si §¢

Sf Sg

Answers 10 selected exercises 325

6.8 0.406)
6.9 position =0.0155A, length=0.348A, 11%
6.10 I, =007A, I,=0042)
6.11 [=0.3131, Z;=79Q
6.12 i) position =0.007}, length = 0.34A
ii) 0.129A (nearer to the load), 0.393)\
iiiy 0.079A, 24.3Q
iv) 7.64 nH, 4.81 pF
v) 0.053A for the 1002 line nearer the load, 0.182 for the 25 line
6.13 I, =1, =0.078)
6.14 i) (31.6Q), (25.1Q, 39.8Q), (21.20, 26.6Q, 37.6Q, 47.2Q)
71 C=357dB
72 i) 4.77dB, 70.7Qand 40.8Q
74 VS.WR.=1.125
75 68.8Q, 72.8Q
76 atfy, i) VSWR.=10 ii) C=3.0dB
81 C=32dBatl1.04GHz
82 w=808mm, s=086mm, /=35.1mm

84 117dB
87 VS.WR.=19.0, -10.0dB at port 3, —10.46dB at port 4
810 43%
91 i) 1357GHz
ii) 641 MHz
92 i) 737MH:z
if) 1.56 GHz

93 i) 100x13GHz
if) 10.0+0.6 GHz
9.7 Bandwidth = 146%
9.10 fo=2.0GHz, bandwidth=13 MHz
9.13 In coupling region, w=3.77mm, s =0.38 mm, /=264 mm
102 1.35
103 D=3.19mm, L=2.13mm
10.5 1.889 GHz, 1.964 GHz
n2 p g, ttlssl?
2 [sesql
Isel*(1 - 1510 - L) ,
| (1 =T - soTy) - syl |
11.10§) Without loading, K=0.97 and |A| = 0.62
i) I5;=036/118°, T} =049/24°, 19.8dB, 22.0dB
iii) T{=0.57/83°, T, =008/71°, 19.2dB, 22.0dB

. A > —s;s¢, Gymax) - |sg]?

113 G =




Index

ABCD (transmission) parameters  28-32
application 154, 168

cascaded networks 28

evaiuation 29

lossless line  29-30

parallel stub 156

transmission line 156

absolute stability, see unconditional stability
active circuits, characterization 249-269
active source 24, 25

activity 260

admittance parameters, see y-parameters
all-pass filter 199

alumina 78

amplifier, low-noise  270-271

antennas

circular polarization 246

patch 244-246
attenuation 205, 284

conductorloss 69

dielectric loss 67

in terms of powerloss 72
out-of-band 204

surface roughness 70

attenuation coefficient 3

low-loss line 5
available power 24,26

output  249-250

source 205, 249-250

balanced amplifier 27, 267
balanced mixer 271-275

image rejection  274-275

isolation properties 272-274

with 180° hybrid 272-273

with quadrature hybrid  272-273
balanced stripline, see strip transmission line
band-edge frequency 200
band-pass filter

analysis 215-217

design 221-225

cdge-coupled 215, 225

end-coupled 220, 229
band-stop filter 225-228, 274

327

analysis 226-228
bandwidth 227
bandwidth

band-stop filter 227
directional coupler 184
bias network 270, 271, 280
bias injection 200

d.c. open circuit 201
d.c.return 202
r.f. block 202-203
bilinear transformation
binomial coefficients
boundary conditions
dielectric interface  297-298
Dirichlet 296-297

microstrip lines 46

Neumann  296-297
singularity  298-301
branch-line coupler 274

analysis 155-161,277
broadband design  164-165
improved performance  161-165
maximally-flat 164

multiple section 166-167
Smith Chart analysis 162, 163
Butterworth, see maximally-flat

142
134

capacitance

accurate microstrip values 51
coaxial line 41

comner 98

evaluation 293, 307, 309, 310
ideal parallel plate 47
microstrip 51

open-circuit discontinuity 93
per unit length 2

step transition 103

stripline 44
T-junction
capacitor
chip 235,236, 270, 271
interdigital  235-236
lumped 235-236

108

cavity resonance, see waveguide cavity resonance




328 Index

characteristic impedance 3
analysis formula 52

coaxial line 42

data 317

dispersion 80

even-mode 176, 181, 182, 195, 221
lossless line 4

low-loss line 5

measurement 285-288
microstrip line 52

odd-mode 176, 181, 182, 195,221
quasi-TEM modes  80-81
stripline 45

synthesis formula 56
Chebyshev, see also equi-ripple
Chebyshey filter 206
Chebyshev polynomial 207
Chebyshev transformer 135, 137
chip capacitor 235, 236, 270, 271
chip components  235-237
circular polarization 246
circulator

contra-rotating waves  240-241
microstrip  239-241

scattering parameters 36, 239
classical lumped filter 199
coaxial line 7, 40, 41
coaxial line transition 232
compensation

open-circuit 225

step transition 214, 225
complementary filter 200
conductance per unit length 2
conductorloss 69
conformal transformation 43, 47
conjugate matching 24, 26, 250-252
simultaneous  250-252, 264-266
contra-rotating waves 240-241
coplanar transition 234-235
comer

90° 98, 289-290

capacitance 98

compensated 290

equivalent circuit 98
equivalent length 98
inductance 98

mitered 99, 290

rcactance measurement  289-290
rounded 97

slit compensated 99
coupled port 152, 175
coupled resonators

end-coupled 220, 229
parallel-coupled 215-217
coupled-line formulae 182-184
coupler

180° 167

branch-line, see branch-line coupler

directional, see directional coupler
equi-ripple 188-192
hybrid-line, see hybrid-line coupler
hybrid-ring, see hybrid-ring coupler
Lange 192-196,272
maximally-flat 182-192
quadrature 181, 272
quarter-wave 181
coupling 152, 284
continuously variable 187
to dielectric resonators  243-244
coupling coefficient 158, 180, 183
coupling gap 288

d.c.isolation 270
d.c. opencircuit 201
de. remurn/r.f block 202-203

de-embedding 285
decibel (dB) 3
dielectric disc, see dielectric resonator
dielectric loss 67
dielectric materials 4,77, 78
diclectric resonator 200
coupling mechanism 243-244
fields 242
losses 242
mode chart 243
temperature stability 243
tuning 243-244
diode
matched 272
p-i-n 276
diplexer 199
direct port 152, 175
directional coupler, see also coupler
analogous circuit for parallel-line  186-187
ideal 151
multiple-section 186-192
symmetry planes 37,176
directivity 152
discontinuities
commer 97-101, 289-290
open-circuit  92-97, 289-290
series gap 110-113
step transition 101-107
T-junction 107-110
discontinuity measurement
comer reactance  289-290
mitered cormer 290
open-circuit 288-290
discrete elements, see lumped elements
dispersion 77-82
characteristic impedance 80
effective relative permittivity 77
low frequency approximation 77
distributed line parameters 2
double-section line matching  143-146
double-stub matching  127-130, 281

edge-coupled filters 221-225
edge-coupled lines, see parallel-coupled lines
effective filling fraction 52, 54, 55

dielectricloss 67

even- and odd-modes 182, 184
effective relative permittivity  53-54

data 317

dispersion 77

measurement  285-288
electric fields, parallel-coupled lines 178
elliptical integral 43
end-coupled filters 220, 229
equi-ripple, see also Chebyshev

coupler 188-192
even modes, see even- and odd-modes
even- and odd-mode analysis

branch-line coupler 155-161

hybrid-line coupler  153-155

mixer circuit 274-275

parallel-coupled lines 176-181

power divider 238

series gap 111

two-port equivalent 153-154, 168-171
even- and odd-nodes

characteristic impedance 176, 181, 182,

195, 221

effective permittivity 182, 184

electric fields 178

phase velocity 176

superposition 176

far-field radiation 245

ferrite disc, see circulator

FET 270, 271, 275, 276, 280,281
filling fraction, effective 52, 54, 55
filters

all-pass 199

attenuation 205

band-pass 214-225

band-stop 225-228, 243, 274
Chebyshev  206-209

classical lumped 199
complementary 200
edge-coupled 221-225
end-coupled 220, 229
high-pass 199, 200

low-pass 203-214

low-pass prototype 206
maximally-flat 205

narrowband 241-244
quarter-wave parallel-coupled 215
finite difference method 48, 293-306
finite thickness lines  64-67

flux, electric 311

folded stub 163, 201, 274, 280
forward transmission coefficient 19
forward traveling wave 3
four-port network, two-port equivalent 153

index 329

fractional bandwidth 200, 218

frequency

band-edge 200

cut-off 88

image 274,275

intermediate, see intermediate frequency
frequency scaling 210

gain, see power gain
gallium arsenide 78
gap
coupling 288
series 110-113
Gauss’s Law 41,297
Green’s Function 51, 307, 311, 313, 314
ground, d.c., via substrate 280
group velocity 6
high-pass filter 199, 200
hybrid networks
180° 272-273
quadrature  272-273
hybrid-coil transformer 151
hybrid-line coupler
analysis 153-155
equal power split 152
unequal power split 152
hybrid-ring coupler 272
analysis 168-171
equal power split 167, 171
modified ring impedances 172-173
unequal power split  170-171

image frequency 274, 275
images 311

multiple 313

partial 312

immittance inverter 219-221
impedance, in terms of reflection coefficient 9
impedance scaling 210
impedance synthesis 146-147
incident wave definition 16
incremental inductance rule 71
inductance

comer 98

external 71

lumped 236-237

per unit length 2

step transition 102
T-junction 108

inductors 236

input admittance 13

input impedance 13

at a voltage maximum 10

at a voltage minimum 10
transmission line formula 13, 285
input reflection coefficient 19, 27
insertion gain 268
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insertion loss 284
instability, potential 252-254
interdigital

capacitor 236

coupler, see Lange coupler
intermediate frequency

subtraction circuit 273, 274

summing circuit 273, 274
interstage network  270-271
intrinsic impedance, see wave impedance
inverter, immittance 219-221
isolated port 152, 175
isolation 152, 179, 284
isolator 239

Lange coupler 192-196,272
design formula 194-196
unfolded 193-194
Laplace’s Equation 46, 47, 48, 235, 296, 304
Cartesian coordinates 292
cylindrical coordinates 298, 300, 301
launching techniques, see microstrip transitions
Llewellyn’s stability criterion 255
load impedance 9
measurement 119
nomnalized 9
loaded-line elements  276-278
loading
input/output 255, 261-262
parallel-resistance 255, 266, 268
series-resistance 255, 268
local oscillator 272,274
noise cancellation 273
longitudinal section magnetic (LSM) mode 88
loss
conductor 69
dielectric 67
insertion 205
transmission 205
loss tangent 4, 67,242
lossless network 27
low frequency approximation, see quasi-static
approximation
low-noise amplifier 270-271
low-pass filter 281
design  203-214
low-pass prototype filter 206
lumped components  235-237
lumped element
matching 138-140
prototype 199, 204
lumped filter, classical 199

mapping functions 217
Mason’s function 260
matchedload 10
matching

conjugate 24, 26, 116, 250-252
double stub  127-130, 281
double-section line  143-146
for no reflections 26, 116
lumped element  138-140
quarter-wave transformer  131-136
simultaneous conjugate  250-252
single stub  123-127, 281
single-section line  140-143
tapered line 137
materials, substrate 77, 78
maximally-flat
branch-line coupler 164
coupler 182-192
filler 205
transformer matching  135-136
maximum stable gain 259
Maxwell's Equations 46
meander line inductor 236
measurement
characteristic impedance 285-288
corner reactance  289-290
effective relative permittivity 285-288
load impedance 119, 121
mitered comer 290
open-circuit discontinuity 288-290
reflection coefficient 119,121
relative permittivity 285-288
scattering parameter 282-285
standing wave pattern  121-123
V.S.WR. 121-123
microstrip antennas, see antennas
microstrip lines
accurate capacitance values 51
analysis formulac 48, 317
boundary conditions 46
capacitance 51
characteristic impedance 52, 317
effective permittivity  53-54
experiments 282-291
other published formulae  60-61
synthesis formulae 48, 58, 317
microstrip parameter measurement
characteristic impedance 285-288
effective relative permittivity 285-288
relative permittivity 285-288
wavelength 286
microstrip transition
to coaxial line 232
to coplanar waveguide 234-235
to rectangular waveguide 233
to slot line  233-234
mitered comer 99
measurement 290
mixer, balanced, see balanced mixer
moment method 307
multiple-section directional coupler 186-192
multiple-section transformer  133-136

narrow strip approximation 44
neper 3

network, interstage  270-271
neutralization 27, 255

noise characterization 261, 263
noise temperature 261
non-reciprocal network 239

odd modes, see even- and odd-modes
odd-mode analysis, shielding 74
open-circuit
discontinuity capacitance 93
end correction  92-97, 225
measurement  288-290
oscillations
growth 263-264
stcady-state 263
oscillators 263
output reflection coefficient 19, 28

p-i-ndiode 276
parallel-coupled lines

analagous circuit 186-187
effective permittivity 182, 184
electric fields 178

formulae 319-321
symmetry planes 176
parallel plate capacitor 47
parallel-resonant circuit 200, 219
parameters

ABCD 28-32

admittance (y) 35
distributed line 2

primary 24

scattering  16-28

secondary 2-5

passband ripple 188-192
passivity 260
patch antenna  244-246

phase coefficient 3

lossless line 4

low-loss line 5

phase shifter

constant phase difference 279
loaded-line elements  276-278
switched-line elements 278-279
phase velocity 5,42

even- and odd-mode 182
IT-equivalent circuit 31,212
potential instability 252-254
power combiner, see power divider
power divider

analysis 238

broadband 239

unequal power division 238-239
Wilkinson 237
power gain

available 250

Index 331

degradation circles 262, 265-266
maximum 251-252
maximum stable 259
operating 250

ordinary 250

transducer 250, 264-267
unilateral 259-260

power gain formulae

matched condition 256
unilateral  259-260
unmatched condition 257-259
power-split ratio  158-160, 171, 173
power splitter, see power divider
power waves 18,24

primary parameters 2-4
propagation coefficient 3
coaxial line 42

lossless line 4

scaling 210

tables 206, 208

PTFE 78

Q-factor
external 241
loaded 241-242
untoaded 241-242
quadrature coupler 158, 181, 272
scatiering parameters 37
quality factor, see Q-factor
quarter-wave coupler 181
quarter-wave coupling  215-217
quarter-wave paratlel-coupled filter 215
quarter-wave transformer  131-136, 203, 238,
270,271, 278, 280, 281, 286
quarter-wave transformer matching
multiple section 133-136
single section 131-133
quartz 78
quasi-static approximation 45, 176, 191, 235,
280, 307
dispersionbound 77

r.f.block 202-203
radiation  82-84
conductance 83
enhancement 244
far-ficld pattem 245
line discontinuities  82-84
patch antenna 245
rat-race coupler, see hybrid-ring coupler
reciprocal network 27, 251, 260, 267
reference planes
comer 98
scattering parameter 16, 18, 283-284
step transition 102
T-junction 107
reflected wave definition  16-17
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reflection coefficient 9, 11, 160-161, 163,
164,284
in terms of impedance 9
input  9,13,19,27
load 9
measurement 115,121
output 19, 28
Smith Chart 117
relative permittivity 7
effective, see effective relative permittivity
measurement  285-288
resistance
lumped 235-237
per unit length 2
resonance
cavity 88
multiple 215, 218
transverse 87
resonant modes
degencrate 246
in antennas 245
in circulators  240-241
in dielectric discs 242
resonant-line approximation 34
resonator
dielectric, see dielectric resonator
discontinuity correction 289
parallel 200,219
series 200,219
retum loss 11,284
reverse transmission coefficient 19
reverse traveling wave 3
rough surface 70
rutile 78

s-parameters, see scattering parameters
sapphire 78

scaling
frequency 210
impedance 210

scattering parameter measurement  282-285
phase calibration 283
reference planes  283-284
related parameters 11,284
scattering parameters  16-28
circulator 239
evaluation 18-23
general definition 23-25
in terms of ABCD parameters 30
matrix 16-28
multiport 167, 239
normalizing impedance 17, 24
reference planes 16, 18, 283-284
secondary parameters  2-5 :
self potential 308
series gap
capacitance 110-113
equivalent circuit 110

even- and odd-mode analysis 111
series-resonant circuit 200, 219
shielding 73

odd-mode analysis 74

side wall 74

top plate 75
short circuit via substrate 202
short line approximation 32, 93, 138, 199, 212
simultaneous conjugate matching  250-252, 264-266
single-section line matching  140-143
single-stub matching  123-127, 281
singularities 298-301
skindepth 69, 70
slabline 40
slot-line transition 233-234
Smith Chart 120

admittance chart 119

branch-line analysis 162-163

derivation 117-119

reflection coefficient 117
stability  252-255

absolute 252, 254, 262

circles  253-254, 264-265

criterion  253-254

factor 254,264

formulae 254

Llewellyn’s criterion 255

unconditional 252, 254, 262
stabilization techniques

input/output loading 253

neutralization 255

unilateralization 255
standing wave pattern measurement  121-123
step transition  101-107

capacitance 103

compensation  104-107, 214, 225

equivalent circuit 102

inductance 102

reference planes 102
stepped impedance line  186-192
strip transmission line 40, 43
stub, folded 163, 201
stub matching

double 127-130

single 123-127
sub-areas 50, 307-316
substrate materials 77, 78
substrate permittivity measurement  285-288

cavity method 288
surface

impedance 70

inductance 71

reactance 71

resistance 71

roughness 70
surface waves 85-87,244

TM modes 85
switched-line elements  278-279

Vi

switching circuit
transmit/receive  279-281
symmetrical step transition, see step transition
symmetry planes 37, 153, 155, 167, 176
capacitance analysis 308
paraliel-line coupler 176

T-equivalent circuit 32, 212
T-junction
capacitance 108
compensation 109-110
equivalent circuit 107
inductance 108
reference planes 107
T-R switch  279-281
tapered line matching 137
Tchebysheff, see Chebyshev
TE mode 85,242
TEM mode 2,41
see also quasi-static approximation
thick lines 64-67
thick-line correction 195
three-port scattering parameters 18, 239
TM mode 85
transducer gain (loss) 205
transformation
high-pass to band-stop 200
low-pass to band-pass 200, 217-218
transformer, quarter-wave 203, 270, 271
transitions, see microstrip transitions
transmission coefficient 12, 157
directional coupler 180
forward 19
reverse 19
transmission line
chart, see Smith Chart
coaxial 7
folded 236
lossless 4
low-loss 4
parallel-coupled 175
Il-equivalent circuit 31
primary parameters 2-4
resonant line approximation 34
secondary parameters  2-5
short line approximation 32, 93, 138, 199
212
stepped impedance 186-192
symmetrical strip 40, 43
T-equivalent circuit 32
terminated 8

Index 333

two conductor 1

wavelength 7

zero length 25, 26, 187, 226
transmission loss 11, 205
transmission parameters, see ABCD parameters
transmit/receive switch  279-281
transverse resonance 87
traveling wave 16

backward 4

forward 3

reverse 3
two-port network

active, see active circuits

reference planes 16, 18, 283-284
two-port parameters  16-39

unconditional stability 252, 254

unilateral approximation 27, 28, 260-261, 267
bounds 260

unilateral two-port network 27, 255

unilateralization 27, 255

V.S.WR. 911,121, 122,284
measurement  121-123, 286-287
velocity
group 6
phase 5
voltage coupling coefficient, see coupling
coefficient
voliage standing wave ratio, see V.S.W.R.

wave equation 2

wave impedance

conductor 70

free space 82
waveguide cavity resonance 88
cut-off wavelength 88
suppression 89
waveguide transition 233
wavelength 6

free-space 7
transmission line 7

wide strip approximation 44
open-circuit correction 96
Wilkinson power divider 237

y-parameters 35
for gain formulac 260, 268
for stability criterion 255

zero length line 25, 26, 187, 226






